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Long noncoding RNAs (lncRNAs) have emerged as significant players in almost
every level of gene function and regulation. Thus, characterizing the structures
and interactions of lncRNAs is essential for understanding their mechanistic
roles in cells. Through a combination of (bio)chemical approaches and
automated capillary and high-throughput sequencing (HTS), the complexity
and diversity of RNA structures and interactions has been revealed in the
transcriptomes of multiple species. These methods have uncovered important
biological insights into the mechanistic and functional roles of lncRNA in gene
expression and RNA metabolism, as well as in development and disease. In this
review, we summarize the latest sequencing strategies to reveal RNA structure,
RNA–RNA, RNA–DNA, and RNA–protein interactions, and highlight the recent
applications of these approaches to map functional lncRNAs. We discuss the
advantages and limitations of these strategies, and provide recommendations
to further advance methodologies capable of mapping RNA structure and
interactions in order to discover new biology of lncRNAs and decipher their
molecular mechanisms and implication in diseases.

Biological Significance of lncRNAs and RNA Structure
In the human genome, approximately 93% of DNA can be transcribed as RNA, only 2% of which is
protein-encoding mRNAs, while the remaining 98% is known as noncoding RNAs [1,2]. Among
these noncoding RNA ‘dark matters’, RNAs longer than 200 bases are classified as lncRNAs.
Since the advent of the genomic era in the 2000s, significant progress has been made toward the
understanding of the prevalence, abundance, biogenesis, and functions of lncRNAs across
different cell types and species [3,4]. In particular, lncRNAs have been demonstrated to play
important roles in epigenetic control and the regulation of transcription, translation, RNA metabo-
lism (Table 1), as well as stem cell maintenance and differentiation, cell autophagy and apoptosis,
and embryonic development [5–7]. In addition, lncRNAs have been implicated in major diseases
including different types of cancer, and neurological and cardiovascular diseases [8–10]. With the
accumulating knowledge of genomic variations and expanding lncRNA repository, many disease-
associated single nucleotide polymorphisms (SNPs) have been mapped to lncRNA genes
[11–14]. Databases such as LincSNP and LincSNP 2.0 have been created to facilitate the
exploration of the potential functions of lncRNA-associated SNPs [15,16].

The discovery of the catalytic and regulatory functions of RNA have refined the central dogma of
molecular biology and highlighted the multifaceted biological roles of RNA [17,18]. A significant
body of research has shown that the higher-order structures as well as interactions of RNA serve
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Glossary
Bivalent RNA–DNA linker: a linker
that can ligate RNA to proximal DNA.
Click reaction: a chemical reaction
that is selective, high yielding, and
simple to perform.
Crosslinking and
immunoprecipitation (CLIP): a
method that couples UV crosslinking
with immunoprecipitation to identify
transcripts that interacted with a
specific protein.
Cross-species control: a control
assay performed using samples from
two species. For example, MARIO
was used in Drosophila S2 cells and
mouse ES cells to test the extent of
random ligation of RNA molecules.
Fragmentation sequencing (Frag-
seq): a method that couples RNase
P-mediated cleavage with HTS.
G quadruplex: a nucleic acid
secondary structure formed by a G-
rich sequence that can self-assemble
into two or more G-quartet planes,
which then stack on top of each
other.
Parallel analysis of RNA structure
(PARS): a method that couples
RNase V1- or RNase S1-mediated
cleavage with HTS.
Proximity ligation: a ligation of two
physically proximal nucleic acid
termini.
Ribonucleoprotein particle: a
biomolecular complex that consists
of RNA and RBPs.
Riboswitch: an RNA molecule that
can sense small ligands, such as
metabolites or ions, and induce RNA
conformational changes to affect
gene expression.
Ribozyme: an RNA molecule that
can act as an enzyme and catalyze
reactions, such as RNA ligation or
cleavage.
RNA interactome: a term to
describe the interactions of all
transcripts in the transcriptome, such
as RNA–RNA, RNA–DNA, RNA–
protein, and others.
RNA immunoprecipitation
sequencing (RIP-seq): a method
that couples native RNA
immunoprecipitations with HTS to
identify transcripts that interacted
with a specific protein.
RNA structurome: a term to
describe the structures of all
transcripts in the transcriptome.
Selective 20hydroxyl acylation
analyzed by primer extension

Table 1. Roles of Representative lncRNAs in Gene Expression and RNA Metabolism

Biological
process

lncRNA example Role in gene expression and RNA metabolism Refs

Transcription

NRON NRON interacts with importin-b proteins and inhibits the
trafficking of NFAT transcription factor from the cytoplasm
to the nucleus, which can lead to inactivation of target
genes.

[154]

HSR1 HSR1 can interact with eEF1A, forming a HSR1–eEF1A
complex, which can capture and activate the transcription
factor HSF1, resulting in the transcription of Hsp and
expression of HSPs in response to heat and other stress
stimuli.

[155]

Splicing

MALAT1 MALAT1 regulates alternative splicing by controlling the
phosphorylation and distribution of serine/arginine splicing
factors in nuclear speckle domains.

[156]

ASCO-lncRNA The ASCO-lncRNA is a nuclear alternative splicing
regulator and influences the splicing patterns through
binding with nuclear speckle RBP during development in
Arabidopsis.

[157]

Translation

Antisense Uchl1 The Uchl1 mRNA is complemented by an antisense
lncRNA Uchl1, which is shuttled from nucleus to the
cytoplasm under stress condition, to increase UCHL1
protein synthesis.

[158]

HULC HULC is upregulated in hepatocellular carcinoma, which
can bind to miR-372 and downregulates its activity,
leading to reduced translational suppression of its target
transcript PRKACB.

[159]

RNA localization

Xist A-repeat within the lncXist contains two long stem loop
structures, which can recruit PRC2, while C-repeat binds
YY1 transcription factor assisting Xist–PRC2 complex in
targeting the specific sites on X-inactivation center, then
lead to X-linked gene silencing.

[90,160]

ENOD40 A novel nuclear speckle RBP, MtRBP1 (Medicago
truncatula RNA binding protein 1) can be transported into
cytoplasmic granules during nodule organogenesis by
interacting with ENOD40 in the leguminous plants.

[161,162]

RNA decay

1/2-sbsRNAs Alu elements within cytoplasmic lncRNA (1/2-sbsRNAs)
can form imperfect complementary RNA duplexes with
another Alu elements in the 30 untranslated regions (UTRs)
of mRNAs, then STAU1 protein subsequently recognizes
and binds the resultant dsRNA elements and initiates
target mRNA degradation.

[107]

gadd7 gadd7 can regulate the cell cycle G1/S checkpoint in
response to UV irradiation. UV-induced gadd7 can directly
bind to TAR DNA-binding protein (TDP-43) and interfere
with the interaction between TDP43 and cyclin-dependent
kinase 6 (Cdk6) mRNA, resulting in Cdk6 mRNA
degradation.

[163]

RNA editing

CTN-RNA The 30 UTR of CTN-RNA contains inverted repeat
sequences that can form stem loop recognized by ADAR
enzyme for adenosine-to-inosine editing, then the edited
RNA interacts with p54nrb, promoting its nuclear
retention. This nuclear retention can be involved in the
regulation of mCAT2 gene expression.

[164]

sas-10 The sas-10 transcripts pair with 4f-rnp mRNA to form
double-stranded molecules as target for A-to-G editing by

[165]
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(SHAPE): a technique that uses an
acylating agent, such as 1M7 and
NAI, to react with flexible 20OH
groups of RNA, followed by primer
extension reaction for readout.
Shotgun secondary structure (3S)
approach: a technique that breaks
down long RNA into smaller
fragments for structure probing, and
allows the identification of RNA
structural domains.
Single-stranded/double-stranded
RNA sequencing (ss/dsRNA-seq):
a method that couples cleavage by
ss/dsRNA ribonucleases with HTS.
Structural probing of elongating
transcripts sequencing (SPET-
seq): a method that couples
treatment with fast-reacting DMS
probe and HTS to determine RNA
secondary structures of transcription
intermediates.

Table 1. (continued)

Biological
process

lncRNA example Role in gene expression and RNA metabolism Refs

dADAR editase in the 30 UTR, leading to downregulation of
4f-rnp mRNA levels.

Epigenetic
remodeling

pRNA pRNA is a lncRNA that is complementary to the rDNA
promoter, which can interact with the target site of the
transcription factor TTF-I, forming a DNA: RNA triplex that
is specifically recognized by the DNA methyltransferase
DNMT3b, then mediate de novo CpG of rRNA gene to
repress its expression.

[166]

HOTAIR HOTAIR forms multiple double stem-loop structures that
bind to PRC2 histone-modification complexes and lysine-
specific demethylase 1, mediating different pattern of
histone modifications on target genes related to cancer
diseases.

[167]
versatile functions, as exemplified by ribozymes, riboswitches, and ribonucleoprotein com-
plexes (see Glossary) [19,20]. RNA adopts diverse structural motifs, such as stem-loop, pseu-
doknot, triplex, G-quadruplex, and is capable of long-range interactions, contributing to its basic
biological functions [21]. These structural elements can form through cis (intramolecular) inter-
actions within the same RNA molecule, or through trans (intermolecular) interactions with other
biomolecules such as RNA, DNA, and proteins, to regulate fundamental cellular processes.
Identifying RNA structures and interactions that are involved in gene regulation and function is thus
critical for the elucidation of the underlying biochemical mechanisms. In addition, major efforts
have been dedicated to predicting the impact of SNPs on lncRNA secondary structures and
lncRNA–miRNA interactions, especially with respect to their recently uncovered mechanistic roles
in various diseases [22–24]. To facilitate these efforts, there is a need to experimentally obtain
lncRNA structures and interactions in vivo across diverse disease and cancer models. Combining
these experimental data with a robust computational pipeline will likely generate more accurate
candidates of functional, disease-related lncRNA SNPs for further mechanistic characterization
and potential therapeutic intervention.

One of the main mysteries of lncRNAs is the discrepancy between their low sequence
conservation and functionally important roles. Thus, many studies have been dedicated to
the search for conserved structural elements [25,26]. For example, a large number of correlated
positions in lncRNA were revealed by multiple alignments, suggesting evolutionary conserva-
tion of lncRNA secondary structures [27]. Additionally, many conserved structure elements
were found to be enriched in lncRNAs by screening for functional RNA structures conserved
between mice and 59 other vertebrates [26]. However, all this evidence is from computational
predictions. It remains to be seen how many of these predicted conserved structures are real
and functionally important in vivo.

Another mystery of lncRNAs is their association with the ribosome and potential for encoding
peptides/proteins. Studies have shown that many lncRNAs in the cytosol are bound by
ribosomes [28–30]. While a number of studies have suggested that these ribosome-bound
lncRNAs do not yield peptide/protein products [31,32], implying that the function of these
lncRNAs is at the RNA level, others have suggested that some lncRNAs are likely to generate
peptide/proteins [33,34]. It is still not entirely clear how and why ribosomes and translation
regulators recognize and interact with lncRNAs, and possibly lead to productive peptide/
protein synthesis.
Trends in Biochemical Sciences, Month Year, Vol. xx, No. yy 3
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Despite the importance of structural information for the understanding of lncRNA functions, our
knowledge of lncRNA structures is limited. According to the PDB database [35], the only items
that contain tertiary RNA structure information are the classical ncRNAs such as rRNAs, tRNAs,
and small nuclear RNAs. The flexibility and the relatively large size of lncRNAs have made their
structures difficult to be resolved by traditional 3D structural determination methods. The
computational approach is a useful alternative to predict RNA secondary structure and
interactions between two RNAs [36–39]. Classically, the default module of most computational
methods predicts the most thermodynamically stable structure of an isolated RNA molecule
using minimum free energy approach, with accuracy of prediction decreasing for longer and
more complex RNAs [37]. Recent approaches have suggested that the real biological structure
is more likely to be found when considering a Boltzmann ensemble of suboptimal folding states
[40]. Parallel to computation approaches, experimental enzymatic and chemical RNA probing
methods were developed to analyze the structure of individual RNA transcripts [41]. Never-
theless, in contrast to the classical RNAs such as rRNAs and tRNAs, the structure and
interaction of lncRNAs and other RNA types remained elusive until recently. In the last few
years, HTS methodology development has allowed us to discover and appreciate the elaborate
structure and interaction landscape on a transcriptome-wide scale, and this progress is
discussed below.

Recent Advances in RNA Structure Probing
Methods for probing RNA structuromes, which couple HTS with ribonuclease cleavage or
chemical probing, have facilitated the transcriptome-wide mapping of RNA structure [21,42].
The initial approaches such as parallel analysis of RNA structure (PARS) [43], fragmen-
tation sequencing(Frag-seq) [44], single-stranded/double-stranded RNA sequencing
(ss/dsRNA-seq) [45,46] and selective 20hydroxyl acylation analyzed by primer exten-
sion(SHAPE)-seq [47] were only able to determine transcriptome-wide RNA secondary
structures in vitro. Subsequent development of a new generation of methods, including
Structure-seq [48], DMS-seq [49], Mod-seq [50], SHAPE-MaP [51], and icSHAPE [52], enabled
in vivo transcriptome-wide RNA structure probing, thus providing a better understanding and
support of RNA functions in cellular environment. The in vivo methods can be broadly classified
into three categories: (i) chemical probing – reverse transcriptase (RT) stop readout, such as
Structure-seq; (ii) chemical probing – modified RNA enrichment – RT stop readout, such as
icSHAPE; and (iii) chemical probing – RT mutation readout, such as SHAPE-MaP (Figure 1A).
Detailed experimental and bioinformatic pipelines of these methods have been summarized
elsewhere [42,53–55].

To date, studies of RNA structuromes have revealed several important findings that warrant
further in-depth mechanistic and functional investigation. First, comparison of in vivo- versus in
vitro/in silico-obtained RNA structures has revealed that RNA, including lncRNAs, is less
structured in vivo than is observed in vitro/predicted by in silico analyses, across multiple
species [48,49,52,56,57] (Figure 1B). The finding highlights that cellular factors, such as RNA-
binding proteins (RBPs), RNA helicases, and ribosomes, are important contributors in regulat-
ing the RNA structures in cells [56–59]. Second, distinct RNA structural signatures have been
identified and associated with translation processes, alternative splicing and polyadenylation,
RNA–protein binding, miRNA targeting, RNA modifications, and other events [46,48,52,60–
63], suggesting the significance of RNA structure in gene regulation (Figure 1C). Notably, RNA
structural reactivity has also been correlated with protein domain folding [64,65], linking RNA
structure with protein domain structure and opening up the possibility of coevolution of protein
and RNA structures. Third, comparative studies have revealed that RNA structure changes
under different reaction conditions, such as temperature, somatic variation, ATP depletion,
4 Trends in Biochemical Sciences, Month Year, Vol. xx, No. yy
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Figure 1. Recent Developments in RNA Structure Probing by the Application of Chemical Probes and Sequencing Methods. (A) Three categories of
RNA structure sequencing methods, with representative examples. Briefly, for Structure-seq, chemical probing was performed, followed by detection using RT stop
readout approach to detect reactivity at each RNA nucleotide. For icSHAPE, chemical probing was performed, followed by modified RNA enrichment and RT stop
readout approach. For SHAPE-MaP, chemical probing was performed, followed by detection using RT mutation readout approach. (B) Structurome studies suggest
that RNAs are less structured in cells compared to those observed in vitro or predicted in silico. (C) Distinct RNA structural profiles were identified and associated with
RNA-protein binding, RNA modifications, translation process, alternative polyadenylation, alternative splicing, and miRNA targeting. (D) Genetic, epigenetic, and
environmental factors can impact the structure of RNA. (E) In vitro SHALiPE analysis on canonical rG4s reveals a distinct modification pattern. (F) The effect of different
readout approaches and RTs on a region of 18S rRNA. Adapted from [71]. (G) Chemical structure and mechanism of recently developed RNA structure probes, for
example, glyoxal and its derivatives, 2-methyl-3-furoic acid imidazolide azide, and nicotinoyl azide. The structures and nucleotide specificities of classical probes, such
as dimethyl sulfate, methylnicotinic acid imidazolide, 1-methyl-7-nitroisatoic anhydride, and others, can be found in earlier reviews [42,54]. Abbreviation: RT, reverse
transcriptase.
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RBP knockdown, RNA methyltransferase knockdown, or metabolite concentration
[49,52,61,66–69]. These interesting results suggest the impact of genetic/epigenetic variation
and environment on RNA structures and functions (Figure 1D). These studies were mostly
centered on mRNAs, and thus future research with the focus on lncRNAs will likely expand the
multifaceted biological roles of RNA structure.

The deeper exploration of RNA-structure-probing methods and analyses has encouraged
remarkable technological advances. First, new strategies have been used to study higher-order
RNA structures such as pseudoknot and G-quadruplex. It has been shown that SHAPE
reactivity generated from SHAPE-MaP could be used to verify known and identify new
pseudoknots [51]. Using SHALiPE, a specific chemical-induced modification pattern was
obtained for RNA G quadruplexes in vitro in several transcripts [70] (Figure 1E). Second,
analyses of 18S rRNA data using the RT-stop versus RT-mutation approaches have indicated
distinct structural features on the same RNA, whereby the results were also dependent on the
choice of RT enzymes, indicating the complementary nature of these two methods and the
need to further examine the properties of RT enzymes [71] (Figure 1F). Third, new types of RNA
structure-probing chemicals were developed. For example, glyoxal and its derivatives were
used to target the guanine nucleotides at the Watson–Crick face in vivo [72]. Another bifunc-
tional intracellular SHAPE reagent, 2-methyl-3-furoic acid imidazolide azide (FAI-N3 or FAz),
was shown to form a more stable adduct and longer reactive lifetime than 2-methylnicotinic
acid imidazolide azide (NAI-N3), which allows better control of the experimental reaction by
dithiothreitol quenching [73]. Moreover, nicotinoyl azide (NAz) was designed as a light-acti-
vated, fast-reacting reagent that can measure solvent accessibility of purine nucleobases upon
light irradiation, and supports the detection of RNA–protein interactions and intracellular RNA
structures [74] (Figure 1G). Together with the commonly used dimethyl sulfate (DMS), and
classical SHAPE reagents such as 1-methyl-7-nitroisatoic anhydride (1M7) and 2-methylni-
cotinic acid imidazolide (NAI) [42,54], these chemicals and probing strategies often generate
complementary structural information, and can be directly applied to study lncRNA structure
both in vitro and in vivo.

The sequencing-based RNA structure profiling technologies rely heavily on the development of
robust computational analysis method. However, several key challenges remain to be
addressed in this field [54,55,75], and development in this area is ongoing. Recently, a
statistical machine learning pipeline used a beta-uniform mixture hidden Markov model to
analyze structure probing data, and was able to obtain structural information with high
sensitivity even at low sequencing coverage [76]. Another study, PROBer, was able to identify
isoform-specific chemical modification profiles [77]. In addition to methods that generate full-
length structure profiles or models, algorithms that mine short RNA structure elements directly
from the sequencing data are also of interest in the field. PATTERNA used a pattern recognition
machine-learning algorithm to detect RNA structure motifs, and was shown to achieve a high
accuracy comparable to that of thermodynamic models [78,79].

RNA Structure Probing Applied to lncRNAs
With the development of the RNA-structure-probing techniques, secondary structures of a
number of important lncRNAs were recently uncovered (Table 2). For instance, several
independent studies used a similar approach to investigate lncRNA structure in vitro
[80–85]. In these studies, RNA transcripts were first generated in vitro, followed by either
denaturation or native purification of the desired RNA fragments. Typically, native purification
should allow physiologically relevant lncRNA structures to be preserved. Next, structure
probing by means of chemical modification, enzymatic cleavage or UV crosslinking was carried
6 Trends in Biochemical Sciences, Month Year, Vol. xx, No. yy
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Table 2. Representative lncRNAs Studied by Structure Probing and/or Crosslinking Strategy

lncRNA studied
(length)

Method used Species and system Structural and biological features Refs

SRA
(874 nt)

–SHAPE, in-line, DMS, RNase V1
probing
–3S approach
–Capillary electrophoresis

Human; in vitro (RNA heated and
renatured being probing)

–Four structural domains, consisting of 25 helices, 16 terminal loops, 15 internal loops,
and 5 junction regions
–Domains I–III are more evolutionarily conserved than Domain IV3

[80]

HOTAIR
(2148 nt)

–SHAPE, DMS, and terbium probing
–3S approach
–Capillary electrophoresis

Human; in vitro (RNA natively
folded before probing)

–Four structural domains, consisting of 56 helices, 38 terminal loops, 34 internal loops,
and 19 junction regions
–Many of the structural elements are evolutionarily conserved

[81]

–ChIRP Human MDA-MB-231 breast
cancer cells

–GA-rich polypurine motif of HOTAIR
–Binding sites of HOTAIR are related to more broad domains of PRC2 occupancy and
H3K27me3

[114]

COOLAIR
(�750 nt)

–SHAPE, CMCT probing
–3S approach
–Capillary electrophoresis

Arabidopsis thaliana; in vitro
(RNA heated and renatured being
probing)

–Three major structural domains were observed: 50 domain, 30 major domain and 30

minor domain
–Distal COOLAIR lncRNA consists of 12 helices, 7 stem loops, a 3-way junction, a 5-
way junction, and 2 rare r-turns
–The structures show conservation and covariation across several Brassicaceae
species

[82]

–ChIRP Arabidopsis thaliana –COOLAIR enriched in the nucleation region and the 30 region of the gene FLC [168]

Braveheart
(�590 nt)

–SHAPE and DMS probing
–3S approach
–Capillary electrophoresis

Mouse; in vitro (RNA natively
folded before probing)

–Three structural domains involved: 50 domain, central domain, and 30 domain,
consisting 12 helices, 8 terminal loops, 5 internal loops, a 5-way junction.
–An internal G-rich RNA motif (AGIL) interacts with CNBP

[83]

lncRNA-p21
(2882 nt, short
isoform; 3898 nt,
long isoform)

–SHAPE probing
–Capillary electrophoresis

Human; in vitro (RNA natively
folded before probing)

–Contains inverted repeat Alu elements
–Left and right arm of Alu are linked by single-stranded RNA region
–Each arm consist of a central 3-way junction, followed by a long stem loop
–Alu elements are conserved among primates and embedded in lncRNA-p21

[169]

REPA
(1630 nt)

–SHAPE, DMS, UV crosslinking
probing
–3S approach
–Capillary electrophoresis

Mouse; in vitro (RNA natively
folded before probing)

–Contains 3 structural domains linked by a central junction
–Domain I exhibits the highest dynamics among the three domains, while Domains II
and III are more stable in their structures
–Domains I and II are generally highly conserved across species in their general
structures, but the sequence of Domain III is poorly conserved in mammals.

[84]
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Table 2. (continued)

lncRNA studied
(length)

Method used Species and system Structural and biological features Refs

NEAT1
(shorter isoform:
hNEAT1_S, 3735 nt;
mNEAT1_S,
3176 nt)

–SHAPE probing
–3S approach
–Mod-seq sequencing

Human and mouse; in vitro (RNA
natively folded before probing)

–Formed with four structural domains
–RNA–RNA interactions between the 50 end and 30 ends of NEAT1_L, which are close
to TARDBP binding sites

[85]

–CHART Human MCF7 cells; in situ
(crosslinked nuclear extract)

–Interacts with hundreds of genomic sites
–Colocalize with MALAT1 lncRNA
–Interacts with many overlapping proteins withMALAT1, but each lncRNA also has its
unique protein sets

[170]

MALAT1
(�8300 nt)

–SHAPE and DMS probing
–Capillary electrophoresis

Humans, lizards, zebrafish; in
vitro (RNA heated and renatured
being probing)

–Triple-helix and t-RNA-like structure at the 30 end of MALAT1
–The triplex helix contains base triplets (U:A:U or C:G:C), and stem loops with purine-
rich loops

[171]

–RAP Mouse ESs; in situ (crosslinked
nuclear extract)

–Interacts with thousands of genomic sites
–Indirectly interacts with nascent pre-mRNAs through proteins

[109]

–CHART Human MCF7 cells; in situ
(crosslinked nuclear extract)

–Interacts with hundreds of genomic sites
–Colocalizes with NEAT1 lncRNA
–Interacts with many overlapping proteins with NEAT1, but each lncRNA also has its
unique protein sets

[170]

roX
(roX1: �3700 nt;
roX2: �600 nt)

–SHAPE probing, followed by
denaturing PAGE gel
–PARS sequencing

Drosophila melanogaster; in vitro
(RNA heated and renatured being
probing)

–30-terminal domain of roX1 consists of 3 helices linked by a flexible linker
–Global structure of roX2 consists of 8 stem loops.
–For both roX1 and roX2, the stem regions (but not the loops or linkers) are highly
conserved

[172]

–dChIRP Drosophila melanogaster; in situ
(crosslinked nuclear extract)

–The 3U domains of roX1 are associated in 3D space, whereas the 3D domains of roX1
are spatially distant from each other
–roX1 interacts with hundreds of genomic sites, with majority in X chromosome
–roX1 D domains interacts with MSL complex

[127]
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out, followed by capillary electrophoresis or HTS to infer the secondary structure and tertiary
base pair interactions. The experimental constraints derived from the structure probing were
combined with comparative sequence analysis to generate a consensus structure model. In
some studies, a strategy termed Shotgun Secondary Structure (3S) determination was
used, in which the full-length lncRNA was divided into shorter fragments that were indepen-
dently subjected to structural probing to identify major structural domains. The results of these
studies suggested that lncRNAs are generally folded into multiple well-defined structural
domains that are important for their functions (e.g., protein binding) (Table 2). It is particularly
interesting to note that while it is generally speculated that lncRNAs may contain abundant
conserved structural elements and modules with covarying base pairs, studies also suggest
that it needs more significant covariation support [86–88].

A lncRNA of exceptional interest, Xist, is an �18-kb nuclear lncRNA that is essential for X-
chromosome inactivation in mammalian cells [89], and has been extensively characterized by
multiple structural studies (Table 2) [90–93]. The structure of the conserved A-repeat region
(�400 nt, 8.5 and 7.5 repeats in human and mouse, respectively) at the 50 end of Xist RNA has
been given special attention due to its importance in recruiting the PRC2 Polycomb group
complexes to the inactive X chromosome [94]. While prior structural models suggested that
each repeat base pairs within itself (intra-repeat interaction) [95] or other repeats (inter-repeat
interaction) exclusively [90], in vivo targeted Structure-seq analysis revealed a combination of
both types of structures [91]. In combination with PARIS (discussed in later sections), icSHAPE
probing of human Xist RNA in vivo showed that inter-repeat structures are more prevalent in
vivo and showed that the A repeat is mostly folded as an isolated domain and does not form
base pairs with distant regions [93]. However, SHAPE-MaP of mouse Xist indicated that the
A-repeat region exhibits large structural variability, and likely interacts with other segments of
the Xist RNA [92]. It is possible that the discrepancies of these results are due to the structural
dynamics of the Xist RNA, the variation in cellular environment or reaction conditions, as well as
different experimental and bioinformatic methods used. Nevertheless, these studies revealed in
vivo lncRNA structure for the first time and provided invaluable insights. Future efforts may
focus on dissecting the in vivo lncRNA structures across the transcriptome by optimizing the
existing methods for large scale analysis.

As discussed below, Xist has also been one of the key lncRNA targets in the studies of RNA–
RNA, RNA–chromatin, and RNA–protein interactions.

Strategies for Probing RNA–RNA Interactions and Their Application to
lncRNAs
RNA functions are often governed by interacting with other molecules, including RNA, DNA,
and proteins. Recently, we have witnessed breakthroughs in all the three aspects, allowing us
to reveal the full spectrum of RNA interactomes. In the following sections, strategies and
methods for transcript-specific and transcriptome-wide detection of RNA–RNA, RNA–DNA,
and RNA–protein interactions are described and summarized in Table 3.

RNA–RNA interactions (RRIs) can be generally classified into two groups: interactions mediated
by proteins, or those effected by direct RNA base pairing. Accordingly, methods to decode
RRIs can also be classified into two corresponding categories. The first category includes
protein pull-down-dependent methods such as CLASH [96], hiCLIP [97], and MARIO [98], and
the second category includes direct RRI detection methods such as PARIS [93], SPLASH [99],
and LiGR-Seq [100] (Table 3).
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Table 3. In vivo Approaches to Detect RNA Structure and Interaction

Methods In vivo systems applied to
date

Features Limitations Refs

Chemical probing – RT stop readout

Structure-
seq
DMS-seq
Mod-seq
In cell
SHAPE-seq

Arabidopsis thaliana, yeast,
human, mouse, E. coli,
cucumber mosaic virus,
rice, zebrafish

–Applied to diverse species
–Simple library preparation
–Ensemble measurement

–No direct base pairing information [48–50,56,58,59,
173–177]

Chemical probing – modified RNA enrichment – RT stop readout

icSHAPE Mouse, human –Lower background due to modified
RNA enrichment
–Ensemble measurement

–More steps involved in library preparation
–No direct base pairing information

[52,93]

Chemical probing – RT mutation readout

SHAPE-MaP
DMS-
MaPseq

E. coli, HIV, Drosophila,
yeast, human, influenza A

–Direct base pairing information
–Single molecule measurement

–High background due to low rate of mutation
–The RT mutation readout site is often distinct
from RT stop site

[51,57,62,92,
178,179]

RNA–RNA interaction – protein mediated

CLASH
hiCLIP
MARIO

Mouse, human, yeast,
Drosophila

–Inter-molecules and intra- molecules
RRIs information

–Protein-mediated RRIs
–Limited crosslinking and ligation efficiency

[96,97]

RNA–RNA interaction – direct base pairing

PARIS
SPLASH
LIGR-seq

Mouse, human –Near base solution
–Direct base-paired RRIs
–Long-range RRIs

–Psoralen or AMT crosslinking
–Low mapping rate of duplex reads

[93,99,100]

RNA–DNA interaction – specific target – probe hybridization capture

CHART
ChIRP
RAP
dChIRP

Mouse, human, Drosophila –Effectively enrich target lncRNA –Biotinylated probes needed
–Specific lncRNA

[113,114,127]

RNA–DNA interaction – Specific target – RNA–DNA adenine methylase identification

RNA-DamID Drosophila –High accuracy and sensitivity
–Cell-type-specific interactions

–Methylate adenine residues in the sequence
GATC
–Plasmid construction and transfection needed

[116]

RNA–DNA interaction – transcriptome – proximity ligation

MARGI
GRID-seq
ChAR-seq

Mouse, human, Drosophila –Proximity ligation
–Cross-species control

–Limited ligation efficiency [117–119]

RNA–DNA interaction – transcriptome – split pool

SPRITE Human, mouse –Proximity ligation independent
–Cross-species control
–DNA–DNA interaction included

–Interactions that occur across larger spatial
distances

[120]

RNA–protein interaction – specific target – probe hybridization capture

CHART-MS
ChIRP-MS
RAP-MS
dChIRP-MS

Mouse, human, Drosophila –Effectively enrich target lncRNA –Biotinylated probes needed
–Specific lncRNA

[125–127]
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Table 3. (continued)

Methods In vivo systems applied to
date

Features Limitations Refs

RNA–protein interaction – specific target – RBP biotinylation

RaPID Mouse, human, Zika virus –RBPs binding to target motif or
region
–RBPs binding to mutated motif or
region

–Plasmid construction and transfection needed
–Dependent on specificity of RBP biotinylation

[128]

RNA–protein interaction – transcriptome

RICK
RBR-ID
CARIC

Mouse, human –Proteins binding to newly
transcribed RNA
–For RICK and CARIC, click reaction
is needed
–For RBR-ID, RNA-binding peptide
information can be detected

–4SU or EU label
–No direct RNA–protein pair information

[133–135]
The CLASH method represents one of the first efforts to detect RRIs by crosslinking interacting
RNAs with an RBP of interest. Early development of CLASH focused on describing small
nucleolar (sno)RNA–rRNA interactions by small nucleolar ribonucleoprotein copurification.
Subsequently, the technique was applied to characterize different types of RRIs, such as
miRNA–mRNA interactions via Argonaute protein copurification [96,101]. The basis of hiCLIP is
similar, but this method achieves higher specificity by adding a ligation linker to allow a more
efficient ligation reaction and thus unambiguous hybrid mapping. Both CLASH and hiCLIP rely
on protein pull-down, and therefore in principle identify a class of RRIs involving a certain RBP of
interest. Caution should be taken as immunoprecipitation of some RNA duplexes with the
target RBP may result from promiscuous ligations, even with application of high salt washing or
nitrocellulose membrane transfer in CLASH or hiCLIP, respectively. Considering the low
expression level of lncRNA, the limited number of high-affinity RNA duplex binding proteins,
and the interaction instability without direct RNA–RNA crosslinking, both methods can reveal
only limited information on RRIs of lncRNAs. Recently, MARIO was developed to enrich RRIs
mediated by the whole proteome through protein biotinylation and pull-down (Figure 2A). In this
approach, three control experiments are performed to reduce background noise and random
ligations, including a non-cross-linking control, a nonbiotinylation control and a cross-species
control. The use of strict control assays greatly expands the type and number of discoverable
RRIs, which include RRIs between lncRNAs and, for example, mRNAs and snoRNAs.

The second category of RRI discovery methods identifies interactions by exploiting the ability of
certain small molecules, for example, psoralen or its analogs, to directly crosslink nucleotide
base pairing. The main distinguishing features of these methods (Table 3: PARIS, SPLASH, and
LIGR-seq) reside in the separation and purification of RNA duplexes. In PARIS (Figure 2A), 2D
gel separation is used to select duplex regions before proximity ligation. In SPLASH,
biotinylated psoralen can be used to allow capturing crosslinked duplexes with streptavidin
beads. And in LIGR-seq, RNA ligase CircLigase performs proximity ligation and converts
crosslinked RNAs into circular form, followed by RNase-mediated digestion to remove
unpaired regions. The details of these pipelines are described elsewhere [54,55]. All the three
methods can potentially generate RNA–RNA interactome maps including lncRNA interactions.
However, given that psoralen can only crosslink uridines with limited efficiency, current
methods only revealed a limited number of lncRNA interactions in vivo.
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Figure 2. Recent Developments in the Detection of RNA–RNA and RNA–chromatin interactions. (A) Two categories of methods for transcriptome-wide
RRI detection, with representative examples. MARIO detects protein-mediated RRIs, and the procedures include RNA crosslinking by UV, RNA fragmentation, RNA-
binding protein biotinylation and capture, proximity ligation, library construction, HTS and bioinformatic analysis. PARIS detects RRIs using direct base pairing, and the
procedures include RNA crosslinking by UV and AMT, digestion by RNase, RNA duplexes enrichment by 2D gel selection, proximity ligation, library construction, HTS,
and bioinformatic analysis. (B) Functions of lncRNA-based RRIs, including RNA localization, RNA decay, RNA phase transition, cancer immunity, virus infection, and
tissue differentiation. (C) Two examples of methods for transcriptome-wide RNA–DNA interaction detection. Both in GRID-seq and MARGI, biotin-labeled bivalent linker
is used to ligate RNA to proximal DNA. The procedures of GRID-seq include UV crosslinking, fragmentation, RNA ligation, reverse transcription, DNA ligation, reverse
crosslinking, library construction, and sequencing. The procedures of MARGI include crosslinking, fragmentation, RNA ligation, DNA ligation, reverse transcription,
library construction, and sequencing. (D) Transcriptome-wide RNA–chromatin interaction studies show that cis lncRNA–chromatin interactions are more prevalent than
trans. Abbreviations: HTS, high-throughput screening; lncRNA, long noncoding RNA; RRI, RNA–RNA interaction.
Notably, for all these technologies, bioinformatic pipelines play critical roles in revealing RRIs
from the sequencing data. The key challenges are detecting base-paring duplexes effectively
and estimating the significance of each [102]. Recently, a new algorithm tool named Cross-
Linked reads Analysis (CLAN) was developed to find and merge two nonoverlapping mappings
with the largest read length and then select the merged mappings by a dynamic programming-
based chaining algorithm [103]. The results showed that CLAN can achieve high computational
efficiency and high sensitivity and accuracy of duplex detection at the same time. Meanwhile, to
facilitate the exploration of RRIs of interest, a database called RISE has been created to gather
rapidly accumulating RRI data in humans, mice, and yeast [104].
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Previous studies have revealed diverse functions of lncRNA-based RRIs in RNA localization,
RNA decay, RNA phase transition, cancer immunity, virus infection, and tissue differentiation
(Figure 2B) [105–110]. A particularly interesting type of RRIs is endogenous sense–antisense
interactions, as one-third of human protein-coding genes are overlapped by antisense lncRNAs
in the same locus [27]. Natural antisense lncRNAs are transcribed from the opposite strand of
protein-coding genes and perform diverse functional roles [111]. For example, lncRNAs termed
half-sbsRNAs interact with their sense genes through imperfect base pairing of Alu element to
mediate their decay [107]. Furthermore, lncRNA termed BACE-AS1 interacts with its sense
gene BACE1 to stabilize the target gene [112]. Overall, the newly developed RRI detection
methods have expanded the available RRI information, and are expected to identify important
lncRNA targets and to generate more insights into lncRNA functions.

Strategies for Probing RNA–DNA Interactions and Their Application to
lncRNAs
Nuclear lncRNAs can bind chromatin and regulate chromatin state and gene expression.
Accordingly, methods have been developed to characterize RNA–chromatin interactions.
Initially, such methods were focused on a particular RNA of interest, and included CHART
[113], ChIRP [114], and RAP [115] (Table 3). Through these methods, much information has
been gathered on chromatin binding sites of several well-known lncRNAs including Xist,
NEAT1, and MALAT1. For example, ChIRP revealed that HOTAIR binding sites are enriched
for genes of pattern specification processes, consistent with the fact that HOTAIR enforces the
epigenomic state of distal and posterior positional identity. RAP showed that Xist binds broadly
across the X chromosome during the maintenance of X-chromosome inactivation. Using
CHART, roX2 was shown to be able to bind MSL, a critical protein complex for dosage
compensation in Drosophila. Different to antisense oligohybridization strategies, RNA–DamID
combined the UAS–GAL4 control system and transgenic expression of fusions of DNA adenine
methyltransferase to lncRNAs to map cell-type-specific lncRNA–chromatin interactions in vivo
with high sensitivity and accuracy, and showed that the binding sites of roX1 differ in neural
stem cells from those in salivary glands [116].

All the above-mention RNA–chromatin interaction methods can only provide information of
interacting DNA location for a target lncRNA. Recently, three new proximity ligation dependent
methods, GRID-seq [117], MARGI [118], and ChAR-seq [119], were developed to profile the
map of all RNA–DNA interactions in cells (Figure 2C). The key innovation of these methods is the
design of a bivalent RNA–DNA linker that ligates RNA to proximal DNA in situ in fixed nuclei.
In order to remove random ligation noise, both methods used a mixture of Drosophila cells and
human cells as input to construct a background of cross-species control for nonspecific RNA–
chromatin interactions. The results showed that few RNA–DNA reads are mapped to the
human and Drosophila genomes at the same time, indicating that ligations among different
species are limited. GRID-seq further developed an endogenous background using trans-
chromosomal mRNA–chromatin interactions for further normalization. Except for the proximity
ligation strategy, SPRITE used several rounds of split-pool tagging to label crosslinked com-
plexes with specific barcodes, which provide the information of genome wide RNA–DNA
interaction, even for long-range interactions [120]. Global analysis of RNA–chromatin inter-
actions showed that the majority of lncRNAs exhibit predominant local or cis interactions, while
some specific ones, including MALAT1, NEAT1, and roX2, interact with the chromatin in a trans
fashion (Figure 2D). Indeed, an increasing number of functional studies revealed that many
lncRNAs function locally [121–124]. With more lncRNA–chromatin interactions being reported
and validated, the elaborate mechanism of diverse functional formats of lncRNAs may be
elucidated.
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Strategies for Probing RNA–Protein Interactions and Their Application to
lncRNAs
Mass spectrometry (MS) can be used to identify the interacting proteins of an RNA, often in
combination with target-specific antisense oligonucleotide pull-down. The relevant methods,
such as CHART-MS, ChIRP-MS, and RAP-MS, have a similar underlying strategy consisting of
crosslinking, biotinylated probe hybridization, beads-assisted purification, and detection of the
binding proteins by MS (Table 3). This strategy provides a systematic way to discover the
binding proteins of a target RNA. For example, ChIRP-MS analysis of Xist identified 81
interacting proteins, including hnRNPK, which is involved in Xist-mediated gene silencing
[125]. RAP-MS analysis of Xist also revealed ten significant enriched binding proteins, including
SHARP, which is involved in Xist-mediated recruitment of PRC2 across the X chromosome
[126]. As a further development of ChIRP, the dChIRP approach [127] can identify binding
proteins at specific regions by designing the corresponding targeting probes.

Recently, a new strategy termed RaPID [128] was designed to detect the binding proteins of
target RNA motifs based on biotin ligase BirA (Figure 3A). The application of RaPID identified
known and novel RBPs, including, for example, essential host proteins that interact with Zika
virus RNA. It is particularly useful to reveal the binding proteins for mutated RNA motifs, which
then can be used for studies in cancer or other human genetic disorders.

The techniques describe above studied the binding of proteome to certain individual RNAs,
however, it should be note that several methods to capture the full proteome bound to a
specific class of RNAs in cells have been developed. Among them, oligod(T) hybridization and
capture was well established to study the mRNA-bound proteome [129,130]. The efficiency
and specificity were later improved by the use of nucleoside analogs such as 4-thiouridine
(4SU), a photoactivatable uridine analog, and ethynyluridine (EU), which can be labeled with
biotin by a Click reaction [131,132] (Figure 3B). RBR-ID [133] and RICK [134] use 4SU and
EU, respectively, to label RNAs and then identity the interacting proteins, while CARIC [135]
uses both 4SU and EU. This shows that RICK can identify proteins interacting with newly
transcribed RNAs, including many ncRNAs (Figure 3C). Upon application of RBR-ID, peptides
crosslinked with 4SU-labeled RNA demonstrate a decreased intensity in MS analysis com-
pared to those without crosslinking, indicating the detection of true RNA-binding peptides.
However, while the methods described above have revealed many lncRNA-binding proteins,
the exact associations of lncRNAs and RBPs remain unresolved.

Finally, in addition to the above-mentioned methods that capture RNA–protein interactions in
an RNA-centric way, RNA immunoprecipitation sequencing (RIP) and crosslinking and
immunoprecipitation (CLIP) are proteincentric methods that detect RNA targets of a certain
protein of interest [136,137]. Combined with HTS, different CLIP-seq protocols including HITS-
CLIP [138], iCLIP [139], PAR-CLIP [140], irCLIP [141], and eCLIP [142] have mapped diverse
RNA–protein interactions in multiple species and cell lines. In addition to RNA–protein inter-
actions, RIP and CLIP can also reveal RRIs. For example, a recent study mapped the AGO-
miRNA and AGO-mRNA binding sites from the same HITS-CLIP experiments, and then
identified miRNA–mRNA interactions based on a linear regression model [143]. Computational
methods have been developed to detect miRNA–mRNA, miRNA–lncRNA, and other types of
interactions from the CLIP data sets [144–147].

Future Perspectives and Challenges
The number of lncRNAs being identified and functionally validated far exceeds the ones being
structurally characterized, hindering the investigation and establishment of lncRNA structure–
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Figure 3. Recent Developments in the Detection of RNA–Protein Interactions. (A) Three representativeexamplesofRNA–protein interaction detection methods,
all of which are based on MS. RaPID designs two constructs, one containing the target motif and two flanking BoxB stem loops, which binds the lN peptide with high affinity,
and the other one containing biotin ligase BirA fused with lN peptide, which biotinylates proteins bound to the target motif. RBR-ID uses 4SU to label RNAs and then identifies
RBPs with decreased intensity compared to that without the 4SU label. RICK and CARIC use EU and 4SU to label RNAs, capture the labeled RNA after the click reaction, and
then identify RBPs. (B) Nucleoside analogs of uridine widely used in RNA–protein detection methods: EU, BrU, and 4SU. (C) Transcriptome-wide RNA–protein interaction
detection methods reveal RBPs of diverse kinds of RNAs, including large amounts of lncRNAs. Adapted from [134]. Abbreviations: 4SU, 4-thiouridine; BrU, bromouridine; EU,
ethynyluridine; miscRNA, miscellaneous RNA; MS, mass spectroscopy; RBP, RNA-binding protein; snRNA, small nuclear RNA; snoRNA, small nucleolar RNA.
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function relationship. Several major challenges remain and need to be addressed to gain full
understanding of the biological importance of lncRNA structure and interactions (see Out-
standing Questions).

First, although some lncRNAs such as MALAT1 and NEAT1 are highly expressed, many (or
most) lncRNAs are expressed only weakly, and thus the information on lncRNAs obtained from
transcriptome-wide studies is usually too limited to drive functional investigation of lncRNAs.
One way to resolve this is to enrich target lncRNAs by antisense oligonucleotides, as exempli-
fied by the CHART, CHIRP, and RAP protocols. Parameters such as probe length, numbers,
and density are important to ensure high specificity and efficiency in lncRNA capture.

Second, RNA is dynamic and often adopts multiple structural conformations. Most existing
methods measure the averaged structure of many copies of the same RNA molecule over the
course of reaction. It is a major challenge to dissect individual conformations from a structur-
ome or an interactome ensemble. A few experimental approaches have now started to
generate structural information at the single RNA molecule level [93,99,100,148]. However,
the information obtained from these studies remains complex and entangled with conflicting
alternative interpretations. In parallel to experimental approaches, computational methods are
also in development to resolve this structural ensemble deconvolution issue [149–151].
Nevertheless, without prior knowledge, the de novo identification of individual, and sometimes
subpopulated, RNA structural conformation or interactions, especially for lncRNAs in vivo, will
require significant development in both experimental and bioinformatic directions.

Third, the biological roles of RNA, including lncRNAs, are likely to be linked to their functional
RNA folds, either structured RNA motif and/or unstructured RNA sequence under particular
settings such as their physical location (e.g., nucleus, cytoplasm, and mitochondria), timing of
action (e.g., during transcription, cotranscription, and post-transcription), and specific cellular
conditions (e.g., normal vs. stressed), or cell/tissue types (e.g., healthy vs. cancerous). Studies
have started to characterize the dynamic patterns of RNA structure in different compartments
during their life cycle [152] and across different developmental stages [59]. Several recent
methods have been developed to investigate nascent RNA structure and nascent RNA–protein
interactions, for example, structural probing of elongating transcripts sequencing
(SPET-seq) [153] and RICK [134], and their findings are promising and should be applicable
to lncRNA studies.

Finally, as mentioned in the Introduction, there is a huge knowledge gap in our understanding of
whether lncRNA structures and interactions have significant roles in driving lncRNA evolution,
controlling ribosome association, and regulating their own decay and translation. In addition, it
will be interesting to examine if the generated transcriptome-wide lncRNA structure and
interaction data can help reveal functional disease-related SNPs, and facilitate the determina-
tion of high-resolution 3D lncRNA structures. Addressing these long-standing questions in the
lncRNA field will move us one step closer to establishing the much sought after lncRNA
structure–function relationship.

Concluding Remarks
The discovery of lncRNAs has revolutionized the way we understand the role of RNA in biology.
With the current methods (Table 3), we are beginning to explore and appreciate the complexity
and diversity of the RNA structure and interactions at an unprecedented pace and with
increasingly high sensitivity and resolution. With optimism, we think that further improvement
of the described methods or invention of new sequencing strategies will allow us to address the
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Outstanding Questions
RNA expression issue: can the struc-
tures and interactions of poorly
expressed lncRNAs be revealed on a
large scale? Can new strategies be
developed to enrich rare lncRNAs in
a cost-effective fashion and in a
higher-throughput manner?

RNA structural ensemble issue: can
subpopulated RNA structural confor-
mations be detected unambiguously?
Can new experimental approaches
and bioinformatic pipelines be imple-
mented to deconvolute structural
ensembles into individual structural
conformations?

Spatial–temporal RNA folding issue:
how does RNA fold in different cell
compartments and during biochemical
experimental and bioinformatic noise, artifacts or biases of the existing approaches. Future
applications of these strategies to lncRNAs will enable us to investigate the crucial regulatory
roles of lncRNAs in vivo, provide a mechanistic understanding of their functions, and establish
their relationship with diseases. With extensive and collective efforts from both experimentalists
and bioinformaticians around the globe, we anticipate that these innovative methods and
groundbreaking discoveries will be unveiled in the near future.
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