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Mapping In Vivo RNA Structures and Interactions
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ADVANTAGES:
Structure-seq yields the first in vivo
transcriptome-wide RNA structure map
at nucleotide resolution and icSHAPE
achieves the first global profiling of in
vivo RNA structure for all four bases.
SHAPE-MaP provides unbiased
profiling based on RT mutation rate
instead of RT stop.

PARIS is one of the first methods to
map RNA helices and RRIs at near-
base resolution and COMRADES
provides a global view of multiple
coexisting conformations for the
selected RNA.

ChIRP is one of the earliest methods to
achieve unbiased high-throughput
maps of long non-coding RNA
(lncRNA)-interacted DNA and proteins.
GRID-seq enables the global discovery
of the in situ RNA–chromatin
interactome, while SPRITE reveals
simultaneous RNA–DNA long-range
interactions.

RICK systematically captures the

binding proteins of newly transcribed
RNA and RBR-ID identifies in vivo
protein–RNA interactions in a high-
throughput manner with peptide-level
resolution.

CHALLENGES:
All of the structure-probing methods
obtain RNA structure ensemble
information only.

Methods to compare RNA structures
among different conditions or across
methods are required.

Transcriptomic RRI detection methods
RNA folds to form diverse secondary and tertiary structures and often interacts with other biomolecules to
function in cells. The technologies developed to map in vivo RNA structures and interactions can be broadly
classified into four categories.

(i) RNA structure probing: Methods based on chemical probing to modify RNA, followed by
reverse transcriptase (RT) stop or mutation readout.

(ii) RNA–RNA interaction (RRI) mapping: Methods based on chemical crosslinking agents to
capture direct RNA base pairs, followed by proximity ligation and reverse crosslinking.

(iii) RNA–DNA interaction mapping: Methods based on antisense hybridization probes to capture
RNA-interacting DNA, bivalent linkers to ligate DNA with RNA in the vicinity, or split-pool
tagging to label RNA–DNA interactions with specific barcodes.

(iv) RNA–protein interaction mapping: RNA-centric methods based on the combination of mass
spectrometry with antisense hybridization probe pulldown or nucleoside analog labeling.
are commonly limited by poor
crosslinking and ligation rate.

Transcriptomic protein–RNA interaction
detection methods cannot provide
direct interaction sites.

Putative information is lost in all of
these transcriptomic structure or
interaction detection methods,
especially for transcripts with low
abundance, such as long non-coding
RNAs.
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