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Background:RNA secondary structures play a pivotal role in posttranscriptional regulation and the functions of non-
coding RNAs, yet in vivoRNA secondary structures remain enigmatic. PARIS (Psoralen Analysis of RNA Interactions
and Structures) is a recently developed high-throughput sequencing-based approach that enables direct capture of
RNA duplex structures in vivo. However, the existence of incompatible, fuzzy pairing information obstructs the
integration of PARIS data with the existing tools for reconstructing RNA secondary structure models at the single-
base resolution.
Methods: We introduce IRIS, a method for predicting RNA secondary structure ensembles based on PARIS data.
IRIS generates a large set of candidate RNA secondary structure models under the guidance of redistributed PARIS
reads and then uses a Bayesian model to identify the optimal ensemble, according to both thermodynamic principles
and PARIS data.
Results: The predicted RNA structure ensembles by IRIS have been verified based on evolutionary conservation
information and consistency with other experimental RNA structural data. IRIS is implemented in Python and freely
available at http://iris.zhanglab.net.
Conclusion: IRIS capitalizes upon PARIS data to improve the prediction of in vivo RNA secondary structure
ensembles. We expect that IRIS will enhance the application of the PARIS technology and shed more insight on in vivo
RNA secondary structures.
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Author summary: Decoding RNA secondary structures in living cells is still a thorny problem in bioinformatics.
Recently, PARIS enables the direct capture of in vivo RNA duplex structures in a high-throughput sequencing way. However,
PARIS can only obtain low-resolution information of a mixture of alternative RNA structures. A computational method to
construct the high-resolution structure ensemble is the key to exploit the full power of the PARIS technology. Here we
present IRIS, a method for predicting in vivo RNA secondary structure ensembles base on PARIS data. We expect that IRIS
will help shed more insight on in vivo RNA secondary structures.
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INTRODUCTION

Beyond encoding proteins, RNAs play a variety of
regulatory and functional roles in cells [1]. The RNA
structure, in addition to its sequence, is often key to an
RNA’s function [2]. Driven by the intramolecular
Watson-Crick base pairings (AU, GC) and the wobble
base pairings (GU), RNA secondary structures form the
most important step in RNA folding [3,4].
Many methods have been developed to predict RNA

secondary structures from sequences [5]. Classic methods
predict structures that minimize free energy based on
thermodynamic parameters, including Mfold [6], Vien-
naRNA [7], and RNAstructure [8]. However, RNA
folding is a kinetic and stochastic process, and RNA
secondary structures are dynamic in vivo [9]. An RNA
sequence can often adopt an ensemble of multiple distinct
secondary structures that satisfy a thermodynamic
equilibrium [10,11]. Thus, models and methods that
trace kinetic folding and sample representative secondary
structures have been proposed, such as barrier trees [12],
basin hopping graphs [13], and non-redundant sampling
[14]. These methods aim to search for local optimal
secondary structures based on energy as representative
structures within the kinetic folding landscape. However,
the predicted structure ensembles often misrepresent the
in vivo structures, because various environmental and
trans-acting factors are not considered [9]. In addition,
exploring the whole kinetic RNA folding landscape is
exponential in the lengths of RNAs and therefore
intractable [15].
Additional information is necessary to accurately

predict RNA secondary structures in vivo. Comparative
sequence analysis takes advantages of homologous
sequences and identifies conserved base pairings, relying
on the knowledge of RNA families that adopt similar
structures [16]. Although thousands of such families are
collected in Rfam [17,18], only a few are of high quality
to construct reliable secondary structure models. RNAs
structures determined by nuclear magnetic resonance
(NMR), X-ray crystallography or cryogenic electron
microscopy (cryo-EM) have been used as training data
for machine learning [19–23], and even deep learning
[24] approaches to make more predictions. Nonetheless,
the scant amount of available training data, as well as the
non-negligible gap between training and prediction, has
limited the wide application of these methods. Most
importantly, although both comparative sequence analysis
and machine learning methods bring the prediction closer
to the truth by introducing information from other
sources, they are powerless when the target RNA
structures are significantly heterogeneous, which is very
common given the complicated in vivo situation [9].
High-throughput sequencing-based RNA structure

probing techniques make it possible to directly query
RNA secondary structures transcriptome-wide and in vivo
[25–27]. These techniques can be classified into two
categories according to experimental principles. Nucleo-
tide modification-based methods, such as DMS-seq [28],
Structure-seq [29] and icSHAPE [30], use small molecule
modifiers to measure a score for each base that indicates
whether it is paired. Many computational methods have
been proposed to incorporate modification-based data for
accurate RNA secondary structure prediction in more
cellular states [31–34], and even to generate secondary
structure ensembles of multiple conformations [35].
Crosslinking-based methods, such as SPLASH [36],

LIGR-seq [37] and PARIS [38], directly capture RNA
duplex structures in vivo [39]. For example, a PARIS data
consists of a collection of sequencing reads that indicate
which two regions of an RNA interact [40]. However, two
major issues hamper the construction of complete RNA
secondary structure models using crosslinking-based data
[41]: 1) RNA structures often have alternative conforma-
tions that coexist in the population of multiple copies of a
RNA molecule. These distinct conformations result in
incompatible PARIS reads, i.e., one region can interact
with multiple other regions, 2) the resolution of PARIS
reads is too low to precisely determine paired bases.
Figure 1A shows a real example of PARIS reads that are
mapped to the U2 snRNA [42]. The PARIS sequencing
results showed that region B can pair with both region A
and region C, and the regions were too wide to exactly
identify paired bases. There is a desire to develop
computational methods to incorporate PARIS sequencing
results to construct RNA structural models that represent
the multiple distinct and coexisting conformations with
exact base-pairing information.
Here we propose IRIS, a method for predicting

ensembles of in vivo RNA secondary structures using
PARIS data. The ensemble is composed of a fixed number
of different RNA secondary structures with correspond-
ing proportions. IRIS outperforms minimum free energy-
based prediction in terms of the agreement with
evolutionary conservation and icSHAPE probing data.
IRIS is implemented in Python and freely available at
http://iris.zhanglab.net. We expect that IRIS will help
improve the application of PARIS data and insights into
RNA secondary structures in vivo.

RESULTS

The core concept and framework of the IRIS
algorithm

IRIS uses RNA sequence with mapped PARIS reads as
the input, and outputs an ensemble of representative RNA
secondary structures in corresponding proportions. To
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address the issues of incompatible and fuzzy PARIS reads
(Fig. 1A), IRIS first converts the low-resolution reads into
PARIS support to score pairwise interactions (Fig. 1B),
and then generates a large number of candidate RNA
secondary structures base on the PARIS support (Fig. 1C).
Therefore, each candidate structure will contain precise
base-pairing information supported by a subset of PARIS
reads. Finally, IRIS picks out the optimal combination of
candidate structures and assigns the proportions to
describe the PARIS reads as well as possible (Fig.1D).
The algorithm of IRIS consists of three steps: scoring,

generating and picking. The scoring step cleans mapped
PARIS reads and transforms the read coverage into a
matrix that represents the support from the PARIS data.
The generating step first scans the input RNA sequence to
assemble all short, theoretically possible stems with
PARIS support ranking higher than a certain threshold.
Compatible combinations of these stems are then set as

constraints in RNA folding that generates thousands of
secondary structures with locally minimum free energy.
Similar structures are trimmed by clustering, and
hundreds of structures are retained as candidate structures.
The picking step first eliminates redundant candidate
structures by fitting the matrix of PARIS support with the
base-pairing matrices of candidate structures via LASSO
regression. It then enumerates all combinations with a
fixed number of structures from the remaining ones as
candidate structure ensembles, assigning the proportion of
each structure using linear regression. A Bayesian
framework is adopted to identify the optimal secondary
structure ensemble, considering both thermodynamic
principles and PARIS data. Formally, the output ensemble
with K representative structures can be represented as
X �,α�, where X �=ðX�

1,X
�
2, :::,X

�
KÞT denoting the repre-

sentative structures (X is the base-pairing matrix defined
in Eq. (4)) and α�=ðα�1, α�2, :::, α�KÞ denoting their

Figure 1. An example of PARIS data and the core concept of IRIS. (A) A real example of PARIS reads at the tail of the U2 snRNA.
PARIS identifies 4 blue reads that support the interaction between region B (145–155 nt) and region A (115–125 nt), and 8 yellow
reads support the interaction between region B and region C (175–185 nt). The interactions, however, cannot happen simultaneously.
The PARIS reads do not contain the exact information of paired bases. (B) The heatmap of PARIS support of the U2 snRNA. Note

that in addition to the incompatibility on regions A, B, and C, actually the entire RNA is full of incompatible interactions. (C) Candidate
structures generated by IRIS. The red colors of base pairs represent the corresponding PARIS support. IRIS generates a large
number of candidate structures and eventually picks two structures in this example. (D) The ensemble of two representative RNA

secondary structures predicted by IRIS. The proportion of structure 1 is 60.7% which describes the source of yellow reads. Structure
2 takes 39.3% and describes the source of blue reads.
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corresponding proportions. A flowchart of IRIS is shown
in Fig. 2, with details given in Section “Materials and
methods”.

Evaluation metrics and dataset of IRIS predictions

Since it is currently impossible to know the true in vivo
RNA secondary structure ensemble, we use two indirect
metrics to evaluate the ensemble predicted by IRIS: 1) the
evidence of evolutionary conservation, 2) the consistency
with icSHAPE data, an orthogonal type of in vivo RNA
secondary structural information.
The PARIS data for evaluating the performance of IRIS

was collected from our previous study in the human liver
cancer cell line (Huh7) infected by the Zika virus, which
also used icSHAPE to probe RNA structure in the same
condition [42]. We focused on 524 human RNAs,
collected from the Rfam database [18] via the bpRNA
interface [43]. RNA families in Rfam offer evolutionary
conservation information and bpRNA helps to curate the
consensus secondary structure of each collected RNA.
After mapping and cleaning PARIS data and processing
the icSHAPE pipeline [44,45], 11 RNAs with over 1,000
PARIS reads mapped and with valid icSHAPE scores
were retained as the test data. We then ran IRIS on these
11 RNAs with corresponding PARIS reads and predicted

Figure 2. An overview of IRIS. (A) The input and output of IRIS. IRIS takes as the input an RNA sequence with mapped PARIS
reads, and outputs an RNA secondary structure ensemble composed of K representative secondary structures with corresponding
proportions. (B) The three steps of IRIS: scoring, generating and picking. The scoring step converts the read coverage through a

Gaussian distribution to a matrix of PARIS support. The generating step first scans the RNA sequence to collect all length-k stems
with PARIS support higher than a certain threshold. Next, regarding the compatible combination of stems as hard constraints, a
constrained folding algorithm is applied to make up the stems into complete secondary structures, and similar structures are

clustered into C candidate structures. The picking step eliminates redundant structures via LASSO regression, and assigns
proportions using linear regression, and eventually identifies the optimal ensemble by a Bayesian model.

372 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Jianyu Zhou et al.



RNA secondary structure ensembles with 1, 2 and 3
representative structures (denoted as IRIS-1, IRIS-2 and
IRIS-3 respectively). Parameters for running IRIS
differed by the length of RNA (see Section S2.2 of
Supplementary Materials for details). We also computed
the structure with minimum free energy (denoted as MFE)
as an ensemble of only one structure as the baseline.

Evaluation by evolutionary conservation

Functional RNAs often have evolutionarily conserved
secondary structures, which holds true even for secondary
structures that form transiently during RNA folding in
vivo [46]. Thus, the ensemble of RNA secondary
structures predicted by IRIS is expected to be evolutio-
narily conserved. To validate IRIS, we retrieved the
multiple sequence alignment of homologous sequences in
the corresponding RNA family from Rfam, computed the
normalized mutual information [47] between each pair of
bases using R-scape [48], and represented the result as an
n� n (where n denotes the length of the RNA) matrixM ,
which measures the degree of evolutionary conservation
of base pairs. In this way, a base pair that occurs
frequently among secondary structures in an ensemble
should have a high score in the matrix M . So, we define
the base-pairing probability between bases i and j derived
from the predicted ensemble X �, α� from IRIS as

bij=
XK

k=1
α�kx

�
kij, and we use B to represent the base-

pairing probability matrix. The benchmark for testing the
evolutionary conservation of the predicted ensemble is set
as the Kullback-Leibler (KL) distance between B and M
defined in [49] as Eq. (1).

DKLðB,MÞ=
Xn
i=1

Xn
j=iþ1

bijlogbij – bijlogmij – bij þ mij (1)

As results shown in Table 1, we noticed that ensembles
with multiple representative structures predicted by

IRIS-2 and IRIS-3 are all resulted in a lower KL distance
compared with the structure predicted by MFE, with the
exception of IRIS-2 on the small nucleolar RNA
SNORD45, which is the shortest RNA in the testing
data. These findings imply that IRIS can successfully
utilize PARIS data to predict an ensemble of RNA
secondary structures that are supported by evolutionary
conservation. Moreover, IRIS-1 outperformed MFE on
most of the RNAs, indicating that a single structure
predicted by IRIS yields a more evolutionarily conserved
structure. However, the ensemble prediction is more
suitable for methods based on PARIS data.
To make the benchmarking more intuitive, we used the

U2 snRNA as a proof-of-principle and plotted the
matrices compared by KL distance as heatmaps (Fig.3).
We established base-pairing probability matrices from
ensembles predicted by MFE, IRIS-1, IRIS-2, and IRIS-3
(Fig. 3A). Focusing on the three matrices from IRIS, we
noted that all structures in different ensembles are fully
conserved on the heading half of the U2 snRNA as a long
stem component. The alternative structures generated by
IRIS-2 and IRIS-3 are all located on the tailing half of the
RNA. Fig. 3B presents the matrix of normalized mutual
information calculated from the multiple sequence
alignment of homogenous sequences in the U2 snRNA
family. The ability to accurately predict consecutive
conserved base pairs contributes substantially to the
increased performance of IRIS. Another example of the
RMRP is shown in Section S3 of Supplementary
Materials.

Evaluation on icSHAPE data

Next, we determined the consistency between IRIS-
predicted RNA structure ensembles and icSHAPE data,
an in vivo assay orthogonal to PARIS. The icSHAPE data
was processed into a score ranging from 0 to 1 for each
base of the RNA, indicating the probability that this base

Table 1 The KL distance between the base-pairing probability matrix and the normalized mutual information matrix
Rfam ID/Sequence accession Name Length MFE IRIS-1 IRIS-2 IRIS-3

RF00004/ABBA01028418.1 U2 snRNA 192 147.7 98.1 98.0 93.0

RF00030/M29212.1 RMRP 264 127.9 131.0 96.1 85.3

RF00045/L07382.1 SNORA73 207 218.2 214.4 198.4 195.0

RF00091/AC099332.2 SNORA62 153 327.1 327.1 320.7 299.6

RF00138/X72205.1 SNORD16 99 352.5 318.3 315.2 292.3

RF00279/AL357314.11 SNORD45 79 152.0 156.1 158.4 142.1

RF00478/AY077737.1 SCARNA6 275 494.1 520.7 481.4 470.1

RF00567/AL121585.22 SNORD17 237 385.3 410.9 383.8 366.4

RF00618/U62822.1 U4atac 127 53.5 53.5 52.9 52.6

RF01296/AF308283.1 snoU85 330 245.0 243.5 234.6 232.2

RF02556/ABSL01008103.1 snaR-A 115 582.8 582.8 555.7 555.7

Note: The scores in bold are the cases that IRIS performs better than MFE.
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is paired [33]. Thus, to obtain the distribution of icSHAPE
scores, we focused on the RNA whose consensus
secondary structure curated by bpRNA was validated by
published articles, and we retained 25 RNAs whose
lengths are shorter than 100 nt as the training data
(considering that short, validated RNAs are unlikely to
have alternative secondary structures in vivo). Based on
validated secondary structures, we collected icSHAPE

scores of 291 paired bases and 289 unpaired bases and
used them to fit Beta distributions. Figure 3C shows the
histogram of icSHAPE scores and the Beta distribution of
scores for paired and unpaired bases.
Unlike PARIS data, icSHAPE data provide marginal

information for base pairing. As a result, the benchmark
for measuring the consistency between the predicted
ensemble and icSHAPE data was set as the log-likelihood

Figure 3. Evaluation results of IRIS. (A) Heatmaps of base-pairing probability matrices for the structure ensemble of the U2
snRNA predicted by MFE, IRIS-1, IRIS-2 and IRIS-3. (B) The heatmap of normalized mutual information between each pair of bases
of the U2 snRNA using R-scape. The correct prediction of the pairwise interactions pointed by the black arrow is the major factor that

makes IRIS perform better than MFE. (C) The histogram of icSHAPE scores of paired bases (red) and unpaired bases (blue) in the
training data. The curves are the probability density function of Beta distributions for fitting icSHAPE scores.
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of observing icSHAPE scores from the predicted
ensemble, which can be formulated and simplified as
Eq. (2).

logPðzjX �,α�Þ

=
Xn
i=1

logðbiℬpairedðziÞ þ ð1 – biÞℬunpairedðziÞÞ (2)

z=ðz1, z2,:::, znÞ represents the vector of icSHAPE scores,
and bases whose icSHAPE scores are not available are
omitted from the summation. bi=

Xn

j=1
bij represents the

marginal pairing probability of base i in the predicted
ensemble. ℬpairedð$Þ and ℬunpairedð$Þ denote the Beta
distribution of icSHAPE scores for paired bases and
unpaired bases respectively. The derivation of the
likelihood can be regarded as a generation model from
the predicted ensemble to icSHAPE scores, and the full
derivation is included in Supplementary Section S1.2.
Table 2 shows the result of the log-likelihood of

observing icSHAPE scores from predicted ensembles of
the test data. For most RNAs, the log-likelihood of IRIS-2
and IRIS-3 were significantly higher than MFE, which
indicates the predicted ensemble from IRIS was more
likely to be the in vivo ensemble that generated the
observed icSHAPE data. In some cases (SNORA73,
SNORD16 and U4atac) IRIS-2 and IRIS-3 performed
slightly worse than MFE, and the log-likelihood of all
methods were very close. Also, for single structure
prediction, IRIS-1 performed better than MFE for more
than half of the RNAs. We infer that the predicted RNA
secondary structure ensembles using IRIS is consistent
with icSHAPE data. Thus, IRIS can predict a physiolo-
gically relevant in vivo RNA secondary structure
ensemble.

IRIS efficiently samples RNA structural space

The goal of IRIS is to uncover secondary structures with
low free energy that are supported by PARIS data, and
identify the optimal ensemble from these structures. To
analyse how IRIS work, we used the generating step
of IRIS to generate 100 candidate structures of the
U2 snRNA, and compared them with another 100
secondary structures generated by the non-redundant
sampling algorithm [14] (denote as NRDS). NRDS is the
state-of-the-art method for exploring representative
structures of the RNA folding landscape, considering
only free energy. We also included the minimum free
energy structure. Next, we calculated the base pair
distance [50] between each pair of these 201 RNA
secondary structures, and then performed multidimen-
sional scaling [51] based on the distance matrix to
visualize the relationship of the structures by embedding
them into a two dimensional plane (Fig. 4). Finally, we
split the plane using a Voronoi diagram [52] so that each
dot representing the secondary structure occupies an area
with a different color, where blue represents free energy,
as shown in Fig. 4A, and green represents PARIS support,
as shown in Fig. 4B.
As the results shown in Fig. 4, the secondary structures

generated by IRIS are dispersedly distributed and are
located in states with relatively high free energy and high
PARIS support, whereas structures generated by NRDS
are gathered into clusters and located near the MFE
structure. These findings imply that IRIS, with the
assistance of the PARIS data, can efficiently explore
more space of the RNA folding landscape and avoid
becoming trapped by low-free-energy basins. The
Bayesian model in the picking step can successfully
identify two distant structures, both with significantly

Table 2 The log-likelihood of observing icSHAPE data from the predicted RNA secondary structure ensemble

Rfam ID/Sequence accession Name MFE IRIS-1 IRIS-2 IRIS-3

RF00004/ABBA01028418.1 U2 snRNA 551.5 577.2 578.8 579.5

RF00030/M29212.1 RMRP 435.4 422.4 450.7 452.1

RF00045/L07382.1 SNORA73 298.2 298.3 298.1 297.6

RF00091/AC099332.2 SNORA62 176.9 176.9 190.1 187.3

RF00138/X72205.1 SNORD16 136.4 136.1 135.1 134.7

RF00279/AL357314.11 SNORD45 25.4 40.6 40.6 48.7

RF00478/AY077737.1 SCARNA6 316.3 312.3 319.3 317.7

RF00567/AL121585.22 SNORD17 321.2 322.0 335.6 335.7

RF00618/U62822.1 U4atac 121.4 121.4 120.7 118.9

RF01296/AF308283.1 snoU85 468.7 467.4 473.7 473.8

RF02556/ABSL01008103.1 snaR-A 115.0 115.0 120.3 120.3

Note: The scores in bold are the cases that IRIS performs better than MFE.
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high PARIS support and relatively low free energy, as
representative structures in the predicted ensemble.

DISCUSSION

IRIS capitalizes upon PARIS data to improve the
prediction of in vivo RNA secondary structure ensembles,
which is an important but difficult question in the field of
RNA structure. IRIS addresses two thorny issues of
PARIS data, incompatible reads and low-resolution
pairing information, by converting PARIS reads into
PARIS supports and allocating incompatible reads to
different representative secondary structures in the
predicted ensemble. IRIS consists of three steps (scoring,
generating and picking) that generate a set of candidate
RNA secondary structures. With the guidance of PARIS
reads, IRIS identifies the optimal ensemble through a
Bayesian model that considers thermodynamic principles
and PARIS data. The predicted RNA secondary structure
ensemble can be validated by evolutionary conservation
and icSHAPE data.
Currently, IRIS has two major limitations. Although

some PARIS reads can reflect pseudoknots, IRIS can only
predict representative structures without pseudoknots: the
constrained folding algorithm including pseudoknots is
NP-hard [53], and the number of candidate structures will
dramatically increase when including pseudoknots. In

addition, using PARIS data to predict an ensemble of
secondary structures is not suitable for long RNAs (e.g.,
longer than 500 nt), because the search space increases
exponentially with the length of the RNA and thus
becomes too large. In this scenario, a feasible approach is
to use PARIS data to divide the RNA in to structural
domains [42].
When evaluating the performance of IRIS, only a

limited number of RNAs were considered due to the fact
that a low coverage by the PARIS data would be
insufficient to produce reliable predictions for lowly
expressed RNAs. In addition to exploiting more powerful
computational methods to mitigate low-coverage cases, a
potentially more promising solution might be to conduct
PARIS experiments on a small number of target RNAs of
special interest. This would allow us to amplify the
abundance of the target RNAs to ensure that they will
have sufficient coverage in the resultant PARIS data for
subsequent computational analyses.

MATERIALS AND METHODS

Scoring pairwise interactions

A PARIS data is a collection of single-end high-
throughput sequencing reads that are formed by joining
sequences sampled from the corresponding parts of a

Figure 4. The distribution of candidate structures. The two-dimensional representation of RNA secondary structures
embedded by the multidimensional scaling algorithm based on base pair distances. The red dots represent the structures generated
by NRDS, and the red star represents the MFE structure. The yellow dots denote the structures produced by the generating step of

IRIS, and the yellow stars denote structures elected by IRIS-2. The Voronoi diagram is applied on the plane to make each dot occupy
an area with a different color, where blue indicates free energy in (A), and green represents PARIS support in (B).
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duplex structure. So, mapping PARIS reads to a reference
RNA sequence can be accomplished by a spliced read
alignment tool such as STAR [54]. Since spliced read
alignment tools are originally designed for analysing
RNA-Seq data and alternative splicing, their default
parameters are not suitable for mapping PARIS reads,
especially some biases concerning the intron length and
GU-AG rules. Based on the parameters given in [38],
more considerations of fairly splitting reads are set as the
parameters listed in Supplementary Section S2.1. After
the mapping, only reads that contain one gap and two
continuously mapped sequences with lengths longer than
15 nt each are retained as purified PARIS data. Hence,
each read can be represented as two intervals on the
reference RNA sequence.
When PARIS captures the duplex structure of some

stem, the flanking sequences of the stem are possibly
included in the reads, which induces the low-resolution
read issue. If flanking sequences are considered to be
randomly included in the reads, it is reasonable to assume
that each part of the captured stem is more likely to appear
at the centre of one of the two intervals of a PARIS read.
Thus, instead of counting read coverage uniformly, a
score, called PARIS support, is converted from the input
PARIS reads based on a Gaussian distribution, which
indicates the strength of pairwise interactions. Formally,
for every base pair ði, jÞ, i < j, the PARIS support yij is
defined as in Eq. (3):

yij=yji=log
X
r

NðijUr,�
2Þ

NðUrjUr,�
2Þ

NðjjDr,�
2Þ

NðDrjDr,�
2Þ þ 1

 !
(3)

Here, Ur and Dr represent the centre of the upstream and
downstream intervals of read r, respectively. The standard
deviation of the Gaussian distribution N is � ¼ L=6,
where L is the average interval length of all mapped reads
of the RNA. This setting considers the empirical rule of
Gaussian distributions, that is, about 99.7% of values are
within a band around the mean with a width of six
standard deviations. In this way, for each read, the centre
of intervals contributes most to the PARIS support, while
uncovered regions make almost no contribution. Then,
the density of the distribution is normalized by the peak
density, the total density is scaled by a logarithmic
transformation and a constant 1 is added to ensure non-
negativity. Finally, for an RNA with length n, its PARIS
support yij can be represented as an n� n symmetric
matrix Y . Figure 1B provides an example of the PARIS
support matrix of the U2 snRNA.

Generating candidate secondary structures

An RNA secondary structure consists of stems with
different lengths, which are formed by stacking base pairs

(AU, CG, and GU). Stems with high PARIS support are
more likely to be included in in vivo secondary structures.
Therefore, all theoretically possible length-k stems are
assembled by scanning intervals of length k on the
forward and reverse sequences of an RNA and checking
whether two intervals from the forward and reverse
sequences form a legitimate stem (with no overlap and
separated by a gap big enough to form potential loops).
Theoretically, multiple values of k should be considered
to reduce bias and k should be small enough to achieve
high sensitivity. Note that each length-k stem covers iþ 1
stems of length k – i. To avoid repeated counting, the
covered short stems are omitted in IRIS. Then, the PARIS
support for a stem is defined as the mean PARIS support
of all base pairs in the stem.
Each stem with PARIS support higher than a certain

fraction of nonzero elements in Y is considered as a
necessary component of all in vivo RNA secondary
structures. Treating the base pairs in such a stem as hard
constraints, a constrained RNA folding algorithm devel-
oped in the ViennaRNA package [7] is applied to
compute a complete secondary structure with locally
minimum free energy containing this stem. In order to
explore more locally optimal structures, not only is every
single stem treated as constraints, compatible combina-
tions of pairs of stems are also included as constraints,
where compatibility means that two stems do not overlap
or form a pseudoknot [55]. In this way, thousands of
pseudoknot-free secondary structures that are at relatively
stable states and contain one or two stems with high
PARIS support are generated.
Although the above RNA folding was performed

subject to different constraints, it is still possible
that some identical or similar secondary structures
were generated. So, the final step is to perform an
agglomerative clustering algorithm [56] based on the
base pair distance [50] between RNA secondary struc-
tures to group the generated structures into C clusters.
For each cluster, the secondary structure with the lowest
free energy is retained as the representative structure of
the cluster. These C representative structures are con-
sidered as the candidates of in vivo RNA secondary
structures supported by PARIS data. Formally, each
candidate secondary structure can be represented by an
n� n base-pairing matrix X c with each element defined
as

xcij=
1, if base i and j are  pair in  the  cth structure;

0, otherwise:

�
(4)

Then, the PARIS support of the structure X c is
defined as the mean PARIS support of all base pairs as
in Eq. (5):
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SðX cÞ=

Xn
i=1

Xn
j=1

yijxcij

Xn
i=1

Xn
j=1

xcij

(5)

Picking the optimal ensemble

The final step of IRIS is to infer an RNA secondary
structure ensemble from generated candidate structures
that can best explain the PARIS data. In order to define an
RNA secondary structure ensemble with K representative
structures, an index vector t=ðt1, t2, :::, tKÞ is defined to
denote a subset of indices of C candidate structures. Then,
the structure ensemble indexed by t can be represented as
a K � n� n tensor Xt=ðX t1 ,X t2 , :::,X tK ÞT denoting the
representative structures and a vector αt=ðαt1 , αt2 , :::, αtK Þ
denoting their corresponding proportions. The values of
αt are determined by normalizing the coefficients of a
linear regression between Y and Xt, which tries to fit the
PARIS support matrix by a non-negative linear combina-
tion of base-pairing matrices of representative structures,
and can be solved as in Eq. (6):

min kY –wtXtk2

F

s:t: wt³0
(6)

Here k$kF is the Frobenius norm of a matrix, wt=ðwt1 ,
wt2 , :::,wtK Þ is the vector of coefficients, and the

proportion is defined as αti=wti=
XK

j=1
wtj .

Clearly, there are
C

K

� �
possible ensembles by picking

K structures from C candidate structures, which is a
considerable amount since from every ensemble, we need
perform a linear regression to determine the proportion of
its representative structures. Meanwhile, when enumerat-
ing all the combinations with K structures, it is common
that some structures are redundant with respect to the
PARIS support, which leads the simple linear regression
method to incorrectly allocate proportions in this
degenerative case. Therefore, a LASSO regression on
all C candidate structures is applied as a quadratic
programming solution as shown in Eq. (7):

min kY – vXk2

F
þ gkvk

1

s:t: v³0
(7)

Here, X denotes the tensor of all C candidate structures
and v is the vector of all coefficients. The parameter g is
determined by iterative halving from a large initial value
(e.g., 1) until the resulting v contains more than K non-
zero elements. Then, the scope of candidate ensembles is
narrowed down by only picking structures whose
corresponding coefficients in v are non-zero.

Based on ensembles filtered by LASSO regression,
IRIS adopts the Bayesian framework to choose the
optimal ensemble according to thermodynamic principles
and the PARIS data, which can be formulated as
maximizing the posterior probability of Xt,αt given the
PARIS support Y , as given in Eq. (8):

PðXt, αtjYÞ / PðY jXt, αtÞPðXt, αtÞ (8)

Here, the prior PðXt, αtÞ indicates the probability of
observing the ensemble in the thermodynamic equili-
brium. Since the proportions αt have already been
determined by using the PARIS data, the prior probability
can be simplified by assuming that the mean free energy
of the ensemble follows the Boltzmann distribution [10],
i.e.,

PðXt,αtÞ ¼
1

Z
exp –

1

β

XK
i=1

αtiEðX tiÞ
 !

(9)

Here, Z represents the partition function, β represents the
product of the Boltzmann factor and the thermodynamic
temperature, and Eð$Þ computes the free energy of a given
RNA secondary structure. Then, the likelihood PðY jXt,αt
Þ indicates the probability of observing the PARIS support
matrix from the ensemble, which can be modelled by an
exponential distribution based on the mean PARIS
support of representative structures as in Eq. (10):

PðY jXt, αtÞ ¼ lexp – l Smax –
XK
i=1

αtiSðX tiÞ
 ! !

(10)

Here, Smax denotes the maximum PARIS support among
the C candidate structures, which is set as the baseline to
measure the deviation in the PARIS support of the
ensemble. The parameter l allows us to tune the scale of
the distribution to make it comparable to the prior
distribution. The determination and derivation of l are
described in Supplementary Section S1.1. Finally, the
optimal RNA secondary structure ensemble X �, α� is the
one that maximizes the posterior probability, i.e.,

X �, α� ¼ argmax
Xt ,αt

PðXt,αtjYÞ (11)

Implementation

As the method described above, we have implemented
IRIS in Python. The algorithms for the basic RNA
secondary structure analysis such as calculating free
energy, computing partition function and constrained
folding are powered by ViennaRNA [7]. We utilize SciPy
[57] for regression and Scikit-learn [58] to perform
clustering. VARNA software [59] together with Matplo-
tlib [60] is used to plot RNA secondary structures (e.g.,
Fig.1C, D). When predicting an ensemble using IRIS, it is
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better to set the expected number K of the representative
structure to a small number less than 5, to ensure that the
resulting ensemble is sufficiently informative. In addition,
IRIS requires three parameters, namely the range of
length k for short stems, the certain fraction of PARIS
support in Y as a threshold for filtering stems, and the
number of clusters C.
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