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The versatile roles for RNA as a genetic material carrying 
heritable information and as a ribozyme catalyzing essential 
biological processes are now widely appreicated1. While the 

genetic information is encoded in the RNA sequence, ribozyme 
activity depends on RNA folding into specific secondary or tertiary 
structures2. One of the best-known examples is ribosomal RNA, 
which packs into complex tertiary structures and catalyzes protein 
synthesis during translation3. Also, strikingly, the Human Genome 
Project revealed that the fraction of RNAs responsible for protein 
coding is actually very small, with the majority of other RNAs fall-
ing into the noncoding class4. The past two decades have witnessed 
a burst of studies into the function and regulatory mechanisms of 
the so-called long noncoding RNAs (lncRNAs)5. These lncRNAs 
have been shown to have a variety of biological functions, includ-
ing regulating gene expression by acting as signals, decoys, guides 
and scaffolds6. Notably, this research area has largely focused on the 
functional roles of lncRNAs in various systems, with less attention 
paid to the mechanistic connections between lncRNA structure and 
function, mainly due to the lack of methodologies to access and test 
these attributes.

Thanks to rapid advances in RNA structure-probing methods, 
structure–function relationships for lncRNAs, as well as other types 
of RNAs, have recently started to yield important biological insights. 
In the past 10 years, techniques have been developed to capture 
transcriptome-wide RNA structures (that is, RNA structuromes) 
in many species and across conditions7–36 (Fig. 1). Systems biology 
analyses have well established how the overall RNA structures can 
affect RNA regulation and functions, including RNA processing, 
localization and translation (see review37). Accumulating evidence 
is also starting to highlight the diverse mechanisms through which 
lncRNAs can form different structural motifs to participate in gene 
expression regulation38–44. For example, different structure-probing 

methods combined with crosslinking and immunoprecipitation 
data have revealed that Xist contains multiple well-defined struc-
ture domains, which associate with various functional protein com-
plexes23,39. These studies support existing domain-based models of 
X chromosome inactivation (XCI).

In this Review, we summarize the most recent technological 
advances and discoveries that link RNA regulation and function 
through interrogation of RNA structures. First, we provide an over-
view of the recent technological innovations of RNA structure prob-
ing and discuss technical challenges in the development of RNA 
structure-probing methods with higher resolution and in increas-
ingly informative biological contexts. Second, we focus on the 
important scientific frontier of elucidating the roles of RNA struc-
ture in diverse biological processes and systems. In the final section, 
we speculate on future technological developments and direc-
tions that promise to enrich our understanding of RNA structural  
elements that control fundamental aspects of biology.

Recent technological innovation of RNA structure probing
Present technologies for RNA structure probing can be categorized 
into two main classes. One is based on small-molecule modifica-
tion, while the other depends on crosslinking and proximity liga-
tion. To achieve different experimental aims, individual methods or 
combinations of methods are used to uncover the biological roles of 
RNA structures.

Small-molecule modification-based methods. RNase cleavage- 
based methods, such as fragmentation sequencing (FragSeq)7 
and parallel analysis of RNA structures (PARS)8, are among the 
first technologies that achieve transcriptome-wide RNA structure 
probing with deep sequencing. However, usually, these methods 
can only be applied in vitro, since RNases are too big to penetrate 
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cells. An alternative method is to replace RNases with small mol-
ecules, which also modify RNA targets with structure specificity 
(Fig. 2a). As small molecules are much easier to pass through cell 
membranes, these approaches are now widely used to probe RNA 
structure in vivo.

Two general classes of small molecules have been used for RNA 
structure probing. One is base specific and the other is ribose 
specific. Base-specific probes directly sense base-pairing interac-
tions or solvent accessibility. For example, dimethyl sulfate (DMS) 
reacts with N1 of adenine and N3 of cytosine on the Watson–Crick 
face12,14; N3-kethoxal is used to probe the Watson–Crick face of 
guanine34. In contrast, ribose-specific molecules probe the RNA 
structure by reacting with the RNA backbone to monitor all four 
nucleotides. For example, 2′-hydroxyl acylation analyzed by primer 
extension (SHAPE) reagents comprise a large family of RNA 
structure-probing molecules that acylate the 2′-OH of the sugar 
ring45. Lead(ii) is also an informative probe and it is known to cleave 
single-stranded RNA by directly hydrolyzing the phosphodiester 

backbone33. Particular probes are suitable for addressing different 
biological questions. Guidelines for choosing appropriate probes 
have been provided in some comprehensive reviews46,47. For exam-
ple, probes that react with RNA with slow kinetics are more suitable 
to probing RNA structure in vivo, while probes that react with RNA 
rapidly are suited for analyzing RNA folding dynamics or biological 
processes that occur on fast time scales.

The procedures underlying high-throughput, small-molecule- 
modification-based RNA structure-probing methods are quite simi-
lar. Probes are first incubated with cells. Then, after RNA extraction, 
modified nucleotides are recorded by reverse transcription with a 
truncation (RT stop) in the resulting complementary DNA libraries. 
To improve the structure-probing accuracy, different optimal treat-
ments are used in different strategies (Fig. 2b). A common way of 
enhancing coverage is through RNA fragmentation, although false 
signals can be introduced into the library. Methods to minimize 
RT stop signals derived from unmodified reads have been devel-
oped. For example, in vivo click selective 2′-hydroxyl acylation and  
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Fig. 1 | Summary of RNA secondary structure-probing methods. a, Timeline of technology development for RNA secondary structure probing. 
Enzymatic-based methods, small-molecule modification methods and crosslinking and proximity ligation methods are labeled in orange, green and blue, 
respectively. hiCLIP, hybrid and individual-nucleotide resolution ultraviolet crosslinking and immunoprecipitation; keth-seq, N3-kethoxal probing with deep 
sequencing; LASER-seq/MaP, light-activated structural examination of RNA by high-throughput sequencing/mutational profiling; lead-seq, combined 
lead(II) acetate-mediated cleavage of single-stranded RNA regions with high-throughput sequencing; MARIO, mapping RNA interactome in vivo; PIP-seq, 
protein interaction profile sequencing; RIPPLiT, RNA immunoprecipitation and proximity ligation in tandem; RPL, RNA proximity ligation; RNA-seq, RNA 
sequencing. b, Exciting biological discoveries revealed by different RNA structure-probing methods in vivo. The labels are coloured as in a. lincRNA, long 
intergenic non-coding RNA; snoRNA, small nucleolar RNA. XIST, X-inactive specific transcript.
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Fig. 2 | Recent technological innovations in RNA secondary structure probing. a, Small-molecule-modification-based methods. Different 
probing reagents target diverse positions of RNA molecules. The reagents in red indicate those that have been used for in vivo high-throughput 
probing. The reagents in green indicate those that have been used for in vivo low-throughput probing. The reagents in blue indicate those that 
have only been used in vitro. 1M6, 1-methyl-6-nitroisatoic anhydride; 1M7, 1-methyl-7-nitroisatoic anhydride; BzCN, Benzoyl cyanide; CMCT, 
N-cyclohexy-N′(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate; DEPC, diethyl pyrocarbonate; EDC, 1-ethyl-3-(3-dimethylam
inopropyl)-carbodiimide; ENU, ethylnitrosourea FAI, 2-methyl-3-furoic acid imidazolide; NAI, 2-methylnicotinic acid imidazolide; NAz, nicotinoyl 
azide. b, General procedures of RNA structure probing (top) and alternative strategies used to improve the sensitivity and accuracy of structure 
probing (bottom). The processing steps can be optimized by RNA fragmentation, modification signal enrichment and unmodified signal depletion; 
introducing an RT mutation increases the RNA structure information; and a gene-specific primer can be used to distinguish between different RNA 
isoform species and to characterize the structures of low-abundance transcripts.
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profiling experiment (icSHAPE) enriches modified RNAs to improve 
the signal-to-noise ratio via a refined SHAPE reagent (for example, 
NAI-N3), which allows the introduction of a biotin molecule to the 
modified RNA through a click reaction19. Mod-seq removes the 
unmodified reads using 5′ adapter subtractive hybridization17. Both 
strategies decrease unwanted RT stop signals in probing data. Since 
only one RT stop can be generated from a sequencing read, meth-
ods have been developed to increase RNA structure information 
content in sequencing data, by reading RT mutations instead of RT 
stops caused by modified nucleotides15,27. However, mutation-based 
RNA structure-probing methods usually require a greater sequenc-
ing depth in order to obtain accurate transcriptome-wide muta-
tional profiles. Another improvement for detecting less abundant 
transcripts is to use gene-specific primers during reverse transcrip-
tion. This approach increases the sensitivity of the method and can 
even detect isoform-specific RNA structure27.

Crosslinking and proximity ligation-based methods. 
Small-molecule-modification-based probing methods generate 
one-dimensional RNA structure information for each nucleotide 
base but do not directly identify specific base-pairing partners. In 
contrast, crosslinking-based methodologies can directly capture 
intra- and intermolecular RNA–RNA interactions by proximity liga-
tion. After crosslinking in cells, RNA is extracted and fragmented 
and pairs of interacting fragments are ligated together. RNA inter-
action information is then preserved in chimeras of ligation prod-
ucts and read out by sequencing (Fig. 3a). A number of crosslinking 
and proximity ligation-based technologies have been developed to 
capture the RNA–RNA interactome across organisms, including 
yeast22, humans22–24,29,32, mice21,23 and viruses48,49. Crosslinking liga-
tion and sequencing of hybrids (CLASH) was among the first10. 
This focuses on target protein-associated RNA–RNA interactions 
that are crosslinked upon ultraviolet light exposure50. Methods 
used to map transcriptome-wide RNA–RNA interactions have been 
reported using psoralen-based crosslinking22,23. Of note, psoralen 
can only capture direct RNA–RNA interactions. Indirect RNA–
RNA interactions mediated by proteins can be captured through 
formaldehyde crosslinking32. These recently developed crosslinking 
methods provide a set of high-throughput toolkits that are allowing 
the development of comprehensive maps of RNA–RNA interaction 
in living cells.

A substantial improvement in accurately capturing the RNA 
interactome in libraries has been achieved by target RNA enrich-
ment (Fig. 3b). The psoralen analysis of RNA interactions 
and structures (PARIS) technique, for example, incorporates 
two-dimensional polyacrylamide gel electrophoresis selection to 
enrich crosslinked RNAs23. Sequencing of psoralen crosslinked, 
ligated, and selected hybrids (SPLASH) mediates crosslinking by a 
biotin-psoralen, allowing purification of the crosslinked RNA using 
streptavidin beads22. LIGR-seq (ligation of interacting RNA fol-
lowed by high-throughput sequencing) uses RNase R, a 3′–5′ exori-
bonuclease, to digest uncrosslinked RNAs to enrich crosslinked 
fragments24. COMRADES (crosslinking of matched RNAs and deep 
sequencing) uses biotin-labeled gene-specific primers to enrich tar-
get RNA duplexes, followed by a click reaction in the second puri-
fication step to enhance the accuracy of structure probing29. After 
purification, crosslinked RNAs are fragmentated and end-repaired 
before proximity ligation to produce chimeric RNAs before deep 
sequencing.

In contrast with RNA secondary structures that are dependent 
on inter- or intrastrand base-paring interactions, higher-order RNA 
structures are formed by long-range inter- or intramolecular inter-
actions within the RNA molecules independent of base pairing. How 
are these higher-order RNA structures packed? How do they relate 
to the regulatory role of RNA? Some methods have been developed 
to answer these questions on a transcriptome-wide scale. RIPPLiT 

(RNA immunoprecipitation and proximity ligation in tandem) is a 
method that captures higher-order RNA structures by first enrich-
ing ribonucleoprotein (RNP) complexes through stringent double 
immunoprecipitation and then using RNA proximity ligation to 
investigate three-dimensional organization of the stable RNP core. 
It has been used to study the exon junction complex before transla-
tion and revealed that pre-translational messenger RNAs (mRNAs) 
compact with associated proteins to form rod-like structures28. 
Another method, proximity RNA sequencing, uses barcoded beads 
to capture RNAs in close proximity, reporting on how the nuclear 
transcriptome is partitioned30. Since this method does not contain 
a ligation step, it is not restricted to pairwise interactions, but it can 
detect multiple spatially neighboring RNAs. Recently, RNA in situ 
conformation sequencing (RIC-seq) has been developed to profile 
RNA–RNA spatial interactions in situ globally, by performing RNA 
proximity ligation after formaldehyde crosslinking and incorporat-
ing a biotin-labeled cytidine (pCp-biotin) into the 3′ end of RNA 
to enrich the chimeric fragments. Application of RIC-seq confirms 
that enhancer and promoter RNA–RNA interactions can regulate 
gene expression through modulating chromatin looping32,51.

Integrative methods. As with all technologies, each of the indi-
vidual probing methods detailed above has its own limitations. 
For example, DMS can only probe unpaired adenine and cytosine. 
It is therefore necessary to combine multiple probing regents if 
structural information for each nucleotide is desired. Chemical 
inference of RNA structures followed by massive parallel sequenc-
ing (CIRS-seq) combines N-cyclohexy-N′(2-morpholinoethyl)
carbodiimide metho-p-toluene sulfonate and DMS to probe all 
four nucleotides in single-stranded transcript conformations13. 
Applying CIRS-seq to determine the RNA structurome in mouse 
embryonic stem cells (ESCs) in vitro revealed that Lin28a pref-
erentially binds to RNA motifs in a single-stranded conforma-
tion13. SHAPE reagents can react with the 2′-hydroxyl group of 
the backbone of four nucleotides. However, stacking interactions 
can make unpaired bases poorly reactive towards those reagents46. 
So, additional DMS and terbium probing was performed to vali-
date the HOTAIR (HOX transcript antisense intergenic RNA) 
secondary structure derived from the SHAPE data. The study 
confirmed good agreement between the distinct forms of prob-
ing data and proposed four independent architectural modules 
for HOTAIR, of which two precisely correspond to the predicted 
protein-binding domains40.

SHAPE and SHAPE-like methods have also been integrated with 
crosslinking and ligation-based RNA-probing strategies, especially 
for detecting virus genome structures. Beyond local RNA base pair-
ing, long-range base pairings have been discovered within RNA 
viruses to mediate fundamental viral processes, such as replication 
and translation52. Combining icSHAPE and PARIS, or selective 
2′-hydroxyl acylation analyzed by primer extension and mutational 
profiling (SHAPE-MaP) and SPLASH, has revealed how these 
secondary structures are integrated and regulate viral infectivity 
in Zika and dengue viruses48,49. These studies discovered numer-
ous new RNA structural elements, many of which are potentially 
functional ones supported by coevolution evidence. In particular, 
a strain-specific long-range interaction between the 5′ untranslated 
region (UTR) and the coding region of the E protein was found to 
contribute to the infectivity of Zika viruses49.

Overall, recent innovations in RNA structure probing can be 
grouped into three thematic areas. First, different probes are devel-
oped to obtain a greater signal-to-noise ratio and higher specific-
ity. Second, by improving proximity ligation-based methods, larger 
RNA structures and higher-order structures in the RNP com-
plex are able to be detected. Additionally, multiple methods are  
combined to integrate and take advantage of complementary  
information provided by different probes.
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Linking RNA structures to RNA functions and regulations
Recent innovations in RNA structure probing are particularly excit-
ing as they allow characterization of the secondary structural fea-
tures in large RNAs. This is particularly useful for lncRNAs, which 
are increasingly being recognized as important modulators in 
diverse biological processes (see reviews5,53,54) and potentially pos-
sess greater structural complexity than mRNAs to carry out their 
regulatory functions12,55,56. The recent advance of lncRNA second-
ary structure studies reveals different modes of interaction with  
proteins (Fig. 4).

Discrete structure motifs for binding multiple proteins. Perhaps 
the most well-studied lncRNA of this group is Xist, which is essen-
tial for XCI during female development in mammals. Xist is ~18,000 
nucleotides in length and, once expressed, binds to critical nucle-
ation sites and spreads to establish chromosome-wide silencing 
through step-wise interaction with a large number of proteins57–59. 
Earlier studies revealed the importance of the secondary structure 
in specific regions of Xist for XCI60, but a functional structural map 
of Xist has remained poorly defined until recently.

SHAPE-MaP analysis of the full-length Xist, both in mouse tro-
phoblast stem cells and under protein-free conditions (ex vivo)39, 
revealed that Xist can form 33 well-defined secondary structure 
domains, which is comparable to the number of functional elements 
within ribosomal RNAs. These findings support a model in which 
different domains enable Xist to interact with distinct proteins dur-
ing XCI. The analysis of long-range and alternative RNA struc-
tures by icSHAPE and PARIS revealed that the A-repeat region at 
the 5′ end of Xist, which is critical for epigenetic silencing, tends to 
form duplexes that facilitate interaction with the key silencing fac-
tor SPEN23. Upon localization of Xist to specific nucleation sites, it 
directly interacts with SPEN to form the Xist–SPEN–SMRT complex 
and recruits histone deacetylase 3, leading to transcriptional silenc-
ing and chromatin remodeling. Xist then recruits Polycomb repres-
sive complex 2 (PRC2) in a histone deacetylase 3-dependent manner 
to maintain the inactive state across local chromatin (Fig. 4a)57.  
Given the large size of Xist, this recent progress in structural map-
ping unveils the RNA structure landscape that guides protein 
binding linked to XCI, and also provides important directions for 
higher-order structural studies of Xist in the future.

It is worthwhile noting that RNA-on-X 1 and 2 (roX1 and roX2) 
can mediate dosage compensation in Drosophila61. Analysis of the 
roX RNA secondary structure by SHAPE and iCLIP revealed that 
both roX1 and roX2 contain common and conserved structured 
tandem stem loops, allowing these lncRNAs to bind the male 
lethal (MLE) RNA helicase and other components in the male sex 
lethal (MSL) dosage compensation complex. This observation fur-
ther highlights the view that roX1 and roX2 differ greatly in size 
and sequences but function similarly using comparable structural 
motifs62.

Similar structural analysis has now been applied to many 
lncRNAs, revealing their secondary structures and modes of inter-
action with proteins. HOX transcript antisense intergenic RNA 

(HOTAIR) is a 2,148-nuclotide-long polyadenylated lncRNA 
encoded by the HOXC locus. HOTAIR is proposed to mediate chro-
matin remodeling of the HOXD locus by interacting with PRC2 
components and is required for H3K27 trimethylation and tran-
scriptional silencing of the HOXD locus63. Comparative structure 
analysis of human and mouse HOTAIR revealed a number of con-
served elements, including the PRC2-binding region40. Notably, it 
has become clear that PRC2 can bind RNA64 but does so promiscu-
ously65. It remains an open question how RNA structure influences 
PRC2–RNA interaction-mediated gene inactivation.

The mouse Braveheart (Bvht) RNA acts in trans to regulate car-
diovascular lineage commitment66. SHAPE and DMS probing on 
the in vitro-transcribed full-length (∼590-nucleotide) Bvht found 
that this lncRNA contains three major domains, as well as a 5′ 
asymmetric G-rich internal loop, which interacts with the negative 
regulator CNBP (zinc-finger transcription factor cellular nucleic 
acid-binding protein) in the cardiac developmental program41.

More examples include the steroid receptor RNA activator 
(SRA), an 870-nucleotide lncRNA that can activate several human 
sex hormone receptors in breast cancer67. Structural probing of 
SRA identified four independent domain structures containing 
25 helices (domains I–IV). Importantly, the overall SRA second-
ary architecture is highly conserved across 45 species, and such a 
highly structured SRA interacts with a variety of proteins, including 
its own translation product SRA protein (or SRAP)42. In Arabidopsis 
thaliana, COOLAIR is an lncRNA expressed from the FLOWERING 
LOCUS C (FLC) locus and is important for vernalization68. SHAPE 
analysis revealed that COOLAIR forms numerous secondary struc-
tures with two unusual asymmetric 5′ right-hand-turn motifs 
showing evolutionary conservation69. Overall, these studies on 
functionally important lncRNAs exemplify how an lncRNA can 
form different structure motifs to interact with multiple proteins for 
different functions.

Binding of the same proteins with a multivalent platform. The 
second category comprises lncRNAs that interact with the same 
effector protein through multiple structural modules. Human 
FOXD3 antisense transcript 1 (hFAST) is a 547-nucleotide lncRNA 
that maintains Wnt signaling in human ESCs. hFAST specifi-
cally binds the E3 ubiquitin ligase β-transducin repeat-containing 
protein (β-TrCP), blocking its interaction with phosphorylated 
β-catenin. This interaction prevents β-catenin degradation in the 
deconstruction complex, leading to active WNT signaling, which 
promotes human ESC pluripotency38. In-cell SHAPE-MaP revealed 
that hFAST tends to form five similar but independent stem loops, 
making each hFAST molecule a multivalent β-TrCP-binding plat-
form (Fig. 4b). Stoichiometry analyses revealed that >20% of 
β-TrCP can be sequestered by hFAST in the cytoplasm, suggesting 
that forming a multivalent protein-binding platform in a specific 
lncRNA may represent highly effective decoys. β-TrCP belongs to 
the Fbw (F-box/WD40 repeat-containing) protein family and con-
tains seven WD40 repeats at the carboxy terminus. Truncation and 
in vitro binding assays revealed that hFAST interacts with β-TrCP 

Fig. 4 | Understanding RNA secondary structures facilitates RNA functional studies. a, Model I. One lncRNA forms different structure motifs to interact 
with multiple proteins to support biological functions. Xist forms well-defined secondary structural domains that interact with multiple proteins in a 
domain-based, step-wise sequence of interactions during XCI. HDAC3, histone deacetylase 3; HNRNPU, heterogeneous nuclear ribonucleoprotein U; 
SAF-A, scaffold attachment factor A. b, Model II. One lncRNA forms a multivalent platform for binding a single effector protein. hFAST adopts five similar 
but independent stem loops for β-TrCP binding and acts as a protein decoy of β-TrCP to modulate Wnt signaling in human ESCs. GSK3, glycogen synthase 
kinase 3. c, Model III. Multiple circular RNAs form modules that interact with a group of proteins. Most examined endogenous circular RNAs tend to 
form compact intramolecularly double-stranded duplexes that allow circular RNAs act as a group to interact with the same proteins and regulate their 
functions. d, Model IV. Secondary structure-based RNA–RNA interactions determine LLPS. RNA–RNA interactions regulate LLPS or initiate the formation 
of condensates (which can regulate mRNA sorting) with known impacts related to diseases. e, Model V. RNA functions and regulations are deciphered 
from RNA secondary structure-based RNA interactomes. Crosslinking and proximity ligation-based approaches uncover RNA interactomes in cells, which 
greatly facilitate the identification of long-range RNA duplexes and even intermolecular RNA interactions.
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via the WD40 repeat domain, which is also required for recognition 
of phosphorylated β-catenin. Importantly, hFAST is highly specific, 
barely interacting with other WD40 domain-containing proteins. It 
remains to be tested whether RNA secondary structures underlie 
this exquisite specificity, and whether other lncRNAs fall into this 
multivalent binding class.

Multiple circular RNAs form a binding module. Circular RNAs 
are covalently closed RNAs produced from precursor mRNA 

back-splicing of exons. They are widely expressed in eukaryotes 
with tissue- and cell-specific expression patterns (for reviews, see 
Wilusz70 and Chen71). Despite generally low expression, an opti-
mized SHAPE-MaP assay that can distinguish the structural con-
formation of the circular from the linear cognate RNAs revealed 
that many circular RNAs, but not their cognate linear RNAs, tend 
to form 16- to 26-base pair imperfect intramolecular RNA duplexes 
(Fig. 4c). Such structures allow different circular RNAs as a group 
to bind and regulate the innate immune double-stranded RNA 
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(dsRNA) receptor protein kinase R (PKR)43, probably keeping PKR 
from unnecessary activation in normal cells. Upon poly(I:C) stimu-
lation or encephalomyocarditis infection, which induces innate 
immune responses, circular RNAs are globally and rapidly degraded 
by the activated endonuclease RNase L—a process required for PKR 
activation in early cellular innate immune responses43. Whether 
this mode of RNA–protein interaction is prevalent remains unclear. 
However, many dsRNA-binding proteins bind to short or long 
dsRNA independent of primary sequences72,73, and circular RNAs 
appear to interact with other nucleic acid-binding proteins, includ-
ing OAS43 and NF90/NF110 (ref. 74). It is thus possible that circular 
RNAs also associate with these additional proteins for functions in 
immune response. Nevertheless, the secondary structural informa-
tion about individual circular RNAs is incomplete, and additional 
work is needed to reveal the precise molecular basis of interactions 
between circular RNAs and PKR.

RNA structure underlies phase separation. Recent work has 
revealed that RNAs and proteins can organize into phase-separated 
membraneless organelles or granules that regulate gene expression 
by compartmentalizing and concentrating specific molecules75,76. 
The secondary structure of an mRNA may determine whether 
it will be recruited to or excluded from liquid organelles77. For 
example, the CLN3 and BNI1 mRNAs can interact with each other 
independent of their secondary structures, but they both interact 
with Whi3, a polyQ protein, via a secondary structure-dependent 
manner. As a result, association of CLN3 and BNI1 mRNAs with 
disrupted secondary structure occurred in the presence and 
absence of Whi3, indicating that mRNA self-association can be 
initiated in a protein-independent manner. SHAPE-MaP analy-
sis of CLN3 and BNI1 mRNAs revealed that their structures can 
regulate mRNA sorting into distinct droplets via intermolecular 
interactions. In the presence of Whi3, most Whi3-binding sites 
revealed by SHAPE-MaP are exposed on stem loops in CLN3 
and BNI1 mRNAs (Fig. 4d). Such secondary structure-dependent 
Whi3 binding can alter the secondary structures of target RNAs, 
thus promoting assembly of distinct droplets. How mRNA sec-
ondary structure influences selective uptake of cellular mol-
ecules and impacts liquid–liquid phase separation of messenger 
RNPs remains to be explored. In another study, multivalent base 
pairing of RNAs was found to be essential during gel formation 
without proteins. The length and number of RNA repeats often 
determine intermolecular base pairing. Examples include CAG 
repeats in Huntington’s disease and spinocerebellar ataxias, CTG 
in myotonic dystrophy and the hexanucleotide GGGGCC associ-
ated with familial amyotrophic lateral sclerosis and frontotemporal 
dementia78. Interactions between repeat regions can result in the 
formation of microscopically observable RNA foci and influence 
subcellular RNA localization79 (Fig. 4d).

Long noncoding RNAs can act as structural scaffolds within 
membraneless nuclear condensates80. Nuclear paraspeckle assembly 

transcript 1 (NEAT1) is a key structural component of paraspeckles 
and is essential for paraspeckle formation81. Although SHAPE prob-
ing of the NEAT1 secondary structure revealed putative long-range 
RNA–RNA base-pairing interactions between its 5′ and 3′ ends82, 
how this structure contributes to the liquid–liquid phase separation 
(LLPS)-based paraspeckle assembly remains unclear. In addition, 
interactions with key paraspeckle proteins, such as NONO, which 
are probably synergistically required for de novo paraspeckle for-
mation, require further exploration. Future studies of the key struc-
tural modules of NEAT1 (that is, 8–16.6 kilobases of NEAT183) with 
and without the addition of NONO will provide new insights into 
the NEAT1-organized condensates.

Although many more RNA structural analyses are needed to 
decipher commonalities and differences between mechanisms of 
RNA function and regulation, these examples nevertheless high-
light an important view that understanding the structural details 
of RNAs and their interacting partners is the key to understanding 
their modes of actions in gene expression regulation.

RNA secondary structure-based RNA interactomes. Many 
crosslinking and proximity ligation-based technologies, includ-
ing CLASH, PARIS, LIGR-seq and SPLASH (Fig. 3), have been 
developed to dissect global interaction maps of RNA in cells, but 
several limitations and challenges exist due to false positive prox-
imity ligation or biotinylation of soluble proteins in cell lysates. 
The recently developed RIC-seq method carries out RNA proxim-
ity ligation in situ, thus efficiently capturing global RNA duplexes 
and long-range loop–loop interactions efficiently32. Application of 
RIC-seq constructed an intra- and intermolecular RNA connectiv-
ity map in human cells and identified 642 RNA interaction hubs 
in HeLa cells. The conditions under which these distinct nuclear 
subdomain-localized lncRNAs form trans interactions remain to be 
explored; future global RNA structural mapping at a single-cell level 
will probably provide some clues (Fig. 4e).

Crosslinking and proximity ligation-based technologies have 
greatly facilitated the identification of RNA duplexes formed across 
long distances, and even intermolecular interactions. An impor-
tant notion is that alternative structures frequently occur when one 
sequence base pairs with different intra- or interpartners under dif-
ferent conditions23,32, suggesting the dynamic and flexible nature of 
RNA secondary structures. In contrast, many long-range alterna-
tive RNA structures are evolutionarily conserved23, indicating that 
sophisticated regulatory mechanisms can be adopted to modulate 
structure-based RNA interactomes in cells.

RNA structural changes in gene regulation. In addition to the 
aforementioned individual cases that have uncovered specific RNA 
secondary structural mechanisms and functions, studies have also 
uncovered some general rules and principles of RNA secondary 
structure underlying key steps in RNA processing, localization  
and translation.

Fig. 5 | RNA regulation revealed by differential RNA structure analysis. a, In vivo and in vitro RNA structure differences. RNA is probed in living cells 
(in vivo) or following extraction from cells (in vitro). When comparing in vivo-probed and in vitro-probed RNA structures, a higher SHAPE reactivity 
of RNA elements in vitro indicates their interaction with other biomolecules, such as RBPs. Image adapted with permission from ref. 85, American 
Chemical Society. b, RNA structure differences across subcellular locations. RNA structure connects transcription, translation and RNA degradation. 
Image adapted with permission from ref. 84, Springer Nature. c, RNA structure changes and their functional roles during zebrafish embryogenesis. i. 
During the maternal-to-zygotic transition in zebrafish, maternal mRNAs decay rapidly, while zygotic genes are simultaneously activated. hpf, hours 
post-fertilization. ii. Metagene profile represents the dynamic structure regions are enriched in the 3′ UTR. CDS, coding sequence. iii. In vivo predicted 
secondary structure of miR-430 target sites identified in the 3′ UTRs of rab33ba and fam171a1. The 3′ UTR of fam171a1, which contains an miR-430 target 
site located in a single-stranded region, is strongly regulated by miR-430. For rab33ba, whose mir-430 target site is located in a double-stranded region, 
the miR-430-mediated regulation is less pronounced. iv. Transcripts with dynamic structures in their 3′ UTRs decay during the maternal-to-zygotic 
transition; depletion of portions of these dynamic regions extends their cellular half-life. v. Schematic showing that Elavl1a regulates maternal RNA in a 
structure-dependent manner. Image in (ii) reproduced with permission from ref. 87, Springer Nature; images in (iii) and (iv) adapted with permission from 
ref. 88, Springer Nature; image in (v) adapted with permission from ref. 87, Springer Nature.
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Several genome-wide probing studies have revealed that RNA 
adopts very different structures in vivo and in vitro14,19,84. Interactions 
with proteins, metal ions and ligands are known to be a major cause 
of in vivo and in vitro RNA structural differences. SHAPE-MaP 
was developed to identify RNA binding protein (RBP) binding sites 
using RNA structure-probing data85 (Fig. 5a). Differences in SHAPE 
reactivities obtained from SHAPE-MaP are calculated by subtract-
ing in vivo SHAPE reactivities from in vitro reactivities. A positive 

difference in the SHAPE signal reports sites protected from modi-
fication in the cellular environment, while a negative difference in 
the SHAPE signal indicates enhanced reactivity in cells. By com-
paring mRNA structure between cell and cell-free environments 
in Escherichia coli, Mustoe et al. found that translation efficiency is 
correlated with ribosomal-binding-site (RBS) structure. Conserved 
structural elements were also discovered in 35% of UTRs, some of 
which were validated as novel functional protein-binding motifs86.
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The subcellular localization of RNA is intimately related to its 
function, so it is not surprising that RNA structures differ across 
subcellular locations. Probing RNA structure in chromatin, nucleo-
plasm and cytoplasm reveals dynamic structure information related 
to RNA regulation84 (Fig. 5b). RNAs with a more double-stranded 
structure in the 5′ UTR have a lower transcription rate and a lower 
translation efficiency, presumably due to decreased ribosome bind-
ing. In addition, RNAs with a more double-stranded structure in the 
3′ UTR tend to have a shorter half-life, probably as they are more 
accessible to RNA degradation machines.

Previous studies have focused on the global analysis of RNA 
structures in vivo at steady state. However, like other macromol-
ecules, RNAs dynamically alternate conformational states to real-
ize their biological function. Recently, the structural dynamics of 
mRNA was characterized during embryonic development of the 
zebrafish using icSHAPE87 and DMS-seq88 (Fig. 5c). After fertiliza-
tion, maternal transcripts quickly begin to degrade89. It was found 
that specific 3′ UTR structures regulate maternal RNA degradation 
by affecting mir-430 activity90. The 3′ UTRs of these transcripts 
show more structural changes compared with the 5′ UTRs and cod-
ing regions (affecting the process of maternal RNA degradation87,88) 
and probably more time-controlled RNA events. The structurally 
variable regions within the 3′ UTRs of maternal transcripts con-
tain known motifs for the binding of many RBPs, including those 
important for RNA degradation. The study shows that one RBP 
called Elavl1a binds to the UUUGUUU motif in the 3′ UTR of 
some transcripts and protects them from exonuclease digestion87. 
During development, these motifs become more structured, which 
corresponds to the release of Elavl1a from the RNA and triggers 
transcript degradation.

Future technology development for RNA structure probing
Sequencing-based RNA structure-probing technologies have 
developed rapidly and represent substantial progress over pre-
vious techniques. Datasets generated with these technologies 
have started to provide a global overview of how RNA structure 
is organized in vitro and/or in vivo. However, these strategies 
still have limitations, with probably the biggest challenge being 
the reliable association of structure data with specific biological 
functions. That is, although small-molecule-modification-based 
probing methods coupled with computational analysis can pro-
vide base pair-level structural models, experimental data that 
directly link biological functions to those structural models at 
scale are lacking.

To date, the most commonly practiced validation approach is the 
use of nucleotide mutations to disrupt RNA structures associated 
with a particular function or phenotype, and to rescue the pheno-
type using compensatory mutations predicted to rescue the struc-
tural change27. However, with the notable exception of some viruses, 
such methods have mainly been performed using synthesized RNA 
molecules. Another potentially insightful validation approach is the 
use of super-resolution imaging (such as atomic force microscopy 
(AFM); also called scanning force microscopy) to directly monitor 
conformational changes in multidomain structured RNAs. AFM is 
an emerging platform for studies of RNA structural dynamics91. It 
allows visualization, probing and manipulation of RNA molecules 
under physiological conditions without the need for labeling or 
staining92. For example, AFM analysis has revealed long-range 
interactions in the H11–H27 pseudoknot that are essential for the 
execution of maternally expressed gene 3 (MEG3) in stimulating the 
p53 tumor suppressor pathway44.

Another area ripe for development is fine-scale structural prob-
ing. Current analyses have focused solely on signals representing 
the average behavior of the structuromes. However, given that RNA 
localization is closely tied to its function93, the capacity to experi-
mentally resolve differences between RNA structures in different 

subcellular compartments should deepen our understanding of 
how RNA functions are dynamically regulated in different loca-
tions of cells. Since one RNA can interact with different RBPs to 
form heterogeneous complexes in cells, subcellular RNA structure 
probing should help decouple how different RNA conformations 
are involved in distinct regulatory pathways or carry out different 
functions. Studies have also shown that mRNAs can form differ-
ent secondary structures, which bind the same protein but function 
disparately77. It has also been found that the flexibility of RNA mole-
cules can change and affect the formation of long-range interactions 
and higher-order RNA structures94. Combining fine-scale subcel-
lular RNA enrichment and RNA structure probing may shed light 
on the dynamic changes in the spatial RNA structure within cells.

It must be emphasized that current methods for probing 
genome-wide RNA structures require large amounts of starting 
materials; thus, more sensitive techniques are sorely needed to sup-
port fine-scale structure-probing efforts. Such methods will enable 
the capture of structure information from rare samples, such as tis-
sues from early development or clinical samples, thereby potentially 
uncovering new regulatory roles from RNA structures in develop-
ment and diseases.

Finally, better bioinformatics pipelines are also required to 
enforce data quality control and support accurate quantifications of 
RNA structural data. RNA structural data obtained using different 
profiling methods are currently difficult to compare directly. There 
is an unmet need for bioinformatics methods that can perform 
normalization, comparison and/or integrative modeling of RNA 
structures from different datasets, including datasets obtained with 
different profiling methods. Last but not least, there is fast-growing 
interest in using artificial intelligence algorithms for RNA struc-
ture research. The most obvious application of artificial intelligence 
is the development of accurate and robust methods for predict-
ing RNA secondary structure, with reported methods including 
SPOT-RNA95 and MXfold2 (ref. 96). Artificial intelligence has also 
been used to discover and model structural patterns related to RNA 
function. PrismNet, a deep neural network, has recently been devel-
oped to characterize structural patterns for protein–RNA binding. It 
can accurately predict protein–RNA interactions and their changes 
in a given cellular environment based on information including 
in vivo RNA structures and protein–RNA binding data for matched 
cell lines97. The capacity for accurate prediction of protein interac-
tion partners for an lncRNA of interest will almost certainly help to 
uncover the biological role of lncRNAs.

Concluding remarks
Rapidly developing sequencing-based RNA secondary structure- 
probing technologies have supported exciting new insights at the lev-
els of both individual- and large-scale RNA function. Overcoming 
the current challenges can usher in RNA structural insights at the 
subcellular, single-cell and systems levels. Development of the next 
generation of technologies and analysis algorithms should enable 
investigations of the interplay between RNA structural changes, 
RNA modifications and RBP binding, which are likely to be com-
plex and sophisticated. For example, post-transcriptional m6A 
modification has been shown to regulate HNRNPC binding through 
mRNA and lncRNA structural remodeling98. An array of methods 
are needed to dissect the functional impacts of chemically identi-
fied RNA secondary structural motifs. Efforts are also warranted to 
obtain native-shaped, full-length structures of known modules of 
RNA/RNA–protein complexes. Isolating such complexes will also 
allow methods such as AFM, small-angle X-ray scattering, crystal-
lography, NMR and cryogenic electron microscopy to be applied for 
deriving tertiary RNA structures. Ultimately, tertiary RNA struc-
tures of lncRNA can provide precise base-pairing information at 
single-base resolution, which can deepen understanding of their 
functional mechanisms44,53,99,100.
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