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Abstract

RNA molecules function in numerous biological processes by folding into intricate structures. Here we present RASP v2.0, an updated database

for RNA structure probing data featuring a substantially expanded collection of datasets along with enhanced online structural analysis func-

tionalities. Compared to the previous version, RASP v2.0 includes the following improvements: (i) the number of RNA structure datasets has
increased from 156 to 438, comprising 216 transcriptome-wide RNA structure datasets, 141 target-specific RNA structure datasets, and 81
RNA-RNA interaction datasets, thereby broadening species coverage from 18 to 24, (ii) a deep learning-based model has been implemented to
impute missing structural signals for 59 transcriptome-wide RNA structure datasets with low structure score coverage, significantly enhancing
data quality, particularly for low-abundance RNAs, (iii) three new online analysis modules have been deployed to assist RNA structure studies,
including missing structure score imputation, RNA secondary and tertiary structure prediction, and RNA binding protein (RBP) binding prediction.

By providing a resource of much more comprehensive RNA structure data, RASP v2.0 is poised to facilitate the exploration of RNA structure-

function relationships across diverse biological processes. RASP v2.0 is freely accessible at http://rasp2.zhanglab.net/.
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Introduction

Previous studies have shown that RNA molecules participate
in various biological processes, including transcription, splic-
ing, localization, translation, and degradation(1-5). These
complex cellular activities heavily depend on RNA’s ability
to fold into intricate structures. These structures also provide
potential binding sites or pockets, allowing RNA molecules to
interact with other RNAs, RNA-binding proteins (RBPs), or
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small molecules, thereby making RNA molecules as promis-
ing target for disease treatment(6-9). However, RNA struc-
tures are dynamic and may undergo conformational changes
depending on solvent conditions, resulting in different bind-
ing states under variable cellular context (10-13). This com-
plexity makes traditional protein structure probing methods,
such as X-ray crystallography (14), nuclear magnetic reso-
nance (NMR) spectroscopy(15), and cryo electron microscopy
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(Cryo-EM), which are primarily used to determine a single
conformation, challenging to be applied to RNA structure re-
solving.

In recent years, numerous sequencing-based methods have
been developed to probe RNA structures in a high-throughput
fashion, many of which can be applied in cells (16).
These structure probing methods can be categorized into
footprinting-based and proximity ligation-based methods
(6,17). Footprinting-based methods utilize reagents or en-
zymes to selectively modify or digest RNA molecules based
on their structure, generating structural signals that represent
the probabilities for a nucleotide is in single-stranded con-
formation. DMS-seq (18), icSHAPE(19), SHAPE-MaP (20),
Structure-seq (21) and RL-seq (22), are representative ex-
amples of these methods. Proximity ligation-based methods
employ reagents or proteins to capture spatially proximate
RNA molecules, directly identifying intramolecular RNA-
RNA interactions (RRIs) (within the same RNA molecule)
or intermolecular RRIs (between different RNA molecules).
PARIS (23), SPLASH (24), RIC-seq (25) and KARR-seq (26)
are representative examples of these methods. These high-
throughput methods have produced extensive structural data
both in vitro and in vivo across different species, providing
invaluable resources for studying RNA structure.

A few databases, including RMDB (27), RSVdb (28)
and RASP (29), have been developed as repositories for
footprinting-based structure probing data. Among which,
RMDB primarily focuses on RNA structures identified by
low-throughput methods, while RSVdb specializes in RNA
structures detected using the DMS reagent. RASP stands
out as one of the first databases to include RNA structure
probing data generated from multiple high-throughput meth-
ods. In addition, other databases such as RISE (30), RAID
v2.0 (31) and NPInter v5.0 (32) have been created to cu-
rate RRIs based on proximity ligation-based structure prob-
ing data. However, these databases primarily focus on in-
termolecular RRIs, often overlooking intramolecular interac-
tions. Overall, the existing RNA structure databases primarily
focus on a single type of structure probing data, and usually
provide very limited capacities for online structural analysis.

Here we present RASP v2.0, a substantially updated ver-
sion of the RASP database featuring a much larger collec-
tion of datasets along with enhanced online structural analy-
sis functionalities. Specifically, RASP v2.0 contains 438 RNA
structure datasets derived from 85 publications, and inte-
grates RNA structure data generated from 39 experimental
methods, encompassing both footprinting-based and proxim-
ity ligation-based techniques. RASP v2.0 improved the struc-
ture score coverage of 59 transcriptome-wide RNA structure
datasets using a deep learning-based model, which facilitate
the study of low-abundance RNAs. RASP v2.0 also offers
three online analysis modules for structure-related analyses.
In summary, RASP v2.0 is a powerful database that provides
comprehensive RNA structure probing data and supports var-
ious online structural analysis functionalities.

Materials and methods

Data collection

To develop a more comprehensive RNA structure database,
we integrated RNA structure datasets from our previously re-
leased databases, i.e. RASP(29) and RISE(30). In addition, we
collected and curated all published RNA structure datasets,
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covering research up to March 2024. As shown in Figure 1,
RASP v2.0 incorporates RNA structure data derived from
both footprinting-based and proximity ligation-based struc-
ture probing methods. Specifically, we searched the NCBI
PubMed database (33) using ‘RNA structure’ and ‘RNA-
RNA interaction’ as keywords and manually identified all
publications with downloadable RNA structure datasets. Pro-
cessed data from the NCBI GEO database (34) or supplemen-
tary files in these publications are incorporated into RASP
v2.0 following the approach used in RASP and RISE. Fi-
nally, we curated information from these datasets, includ-
ing experimental methods, reagents, species, cell lines, ex-
perimental conditions, DOI number, and other relevant de-
tails to build RASP v2.0. Detailed information is available in
Supplementary Table S1 and S2.

Structure score imputation

RNA structural profiles from transcriptome-wide RNA struc-
ture data usually contain missing signals for low-abundance
transcripts. To improve data quality, particularly in datasets
with low structure score coverage, we used a deep learning-
based model, StructureImpute (35), to impute the missing sig-
nals. Here we focused on transcriptome-wide RNA structure
datasets with scores ranging from 0 to 1 that fulfill the Struc-
turelmpute requirements. We categorized the datasets into
A/C-only data and A/U/T/C/G data based on the nucleotides
detected by different methods, and we only focused on signals
for the corresponding positions.

To enable imputation across different cellular context,
we fine-tuned the meta model using specific datasets corre-
sponding to each condition. The meta model was trained on
a diverse mixture of icSHAPE datasets, including HEK293
whole cell (in vivo and in vitro), HEK293 chromatin (in
vivo), HEK293 nucleosome (in vivo), and HEK293 cyto-
plasmic (in vivo), and can be downloaded from https:/
github.com/Tsinghua-gongjing/Structurelmpute. Specifically,
we sliced RNA sequences into 100 nt fragments and collected
those with 100% structure score coverage for model finetun-
ing. Fragments were then clustered using BLASTn (36) with
an E-value equal to 10, and split into training and validation
sets at a 7:3 ratio. During the training and validation process,
we randomly masked 30% nucleotides and used the flank-
ing region for missing signal imputation as described in Struc-
turelmpute. Next, we used the default parameters to finetune
the meta model, with a batch size of 800 and a learning rate
of 1E-5 for up to 100 epochs, stopping when no improvement
was observed after 20 epochs. Finally, transcripts with missing
structure scores are iteratively imputed following the strategy
used in Structurelmpute. In each iteration, transcripts were
segmented using a window size of 100 nt and a step size of
10 nt and those fragments with coverage >50% would be im-
puted. The imputed structure scores from each iteration would
be used as input for the next round until the data coverage
reaches 80% for at most eight iterations. To evaluate the per-
formance of our model, we calculated the Pearson correlation
coefficient between the true and imputed structure scores for
all positions with missing signals in the validation set, follow-
ing the strategy mentioned in Structurelmpute.

Database implementation

RASP v2.0 was developed using Django for the back end and
using HTML, CSS and JavaScript for the front end. RNA
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Figure 1. Flowchart of RASP v2.0.

structure data are stored in a MySQL database. Visualiza-
tions of RNA structure data, including structure scores, inter-
molecular RRIs, and intramolecular RRIs, are generated us-
ing JBrowser2 (37), IGV-web (38) and Circos plot (39), re-
spectively. VARNA (40), forna (41) and Molstar (42) were
utilized to visualize RNA secondary and tertiary structures.
Structurelmpute(35), RNAstructure (43), SimRNA (44) and
PrismNet (45) were utilized to perform structure score impu-
tation, RNA secondary structure, RNA tertiary structure, and
RBP binding prediction. RASP v2.0 is installed on a work-
station with four CPUs and three 1080 Ti GPUs, publicly ac-
cessible at http://rasp2.zhanglab.net/ with no login credentials
required.

Results

Expanded structure probing data

We have collected 216 transcriptome-wide RNA structure
datasets, 141 target-specific RNA structure datasets, and 81
proximity ligation-based probing datasets. This collection in-
creases both the quantity and variety of RNA structure prob-
ing data compared to the previous version (Figure 2A). Specif-
ically, we updated the transcriptome-wide RNA structure
datasets from RASP (Figure 2B) and added target-specific
RNA datasets that were not previously included (Figure 2C).
We have also incorporated 81 proximity ligation-based prob-
ing datasets (containing 45 974 567 intramolecular RRIs and
4 628 511 intermolecular RRIs) (Figure 2D). In contrast to the
diverse structure data obtained from footprinting-based struc-
ture probing methods (Figure 2E), the RRI data are predomi-
nantly derived from Homo sapiens, Mus musculus and differ-
ent virus (Figure 2F). Further analysis shown that most of the
intermolecular RRI data provided in RASP v2.0 are mRNA-
related (Figure 2G). More detailed information is available in
Supplementary Table S3.

Improved coverage for low coverage structure
probing data

Some of the transcriptome-wide structure probing datasets
exhibit low data coverage, limiting analyses of RNA struc-

ture and functions. Here we used a deep learning-based
model, Structurelmpute (35), to obtain insights of the miss-
ing signals. As shown in Figure 3A, we filtered 59 valid
datasets from 218 transcriptome-wide structure datasets that
were suitable for missing structure score imputation. These
datasets exhibited <80% structure score coverage and in-
cluded >500 transcripts. Next, we individually fine-tuned
the meta model from Structurelmpute on these 59 datasets.
The results demonstrated an averaged Pearson correlation
of 0.725 on the validation set for the 59 datasets, com-
pared to 0.498 without fine-tuning, indicating that the im-
puted structure scores accurately represent the experimen-
tal probing data (Figure 3B). Finally, we applied these fine-
tuned models for missing structure score imputation, increas-
ing the average structure score coverage for these datasets
from 48.7% to 71.0% (Figure 3C). We also present the
improvements of structure score coverage for each dataset
(Figure 3D).

As shown in the example regions within signal recogni-
tion particle (SRP) RNA from the icSHAPE_HEK293 dataset,
we observed a 0.762 Pearson correlation coefficient between
the ground truth and the imputed structure scores for all
nucleotides with missing signals (Figure 3E). By building
structural models with/without SHAPE reactivity score con-
straints, we found that the structure generated with imputed
SHAPE reactivity score constraints is consistent with the one
generated with original SHAPE reactivity score constraints
(Figure 3G, H), and is similar to the known RNA secondary
structure of SRP RNA from RNAcentral (46). However, these
structures were entirely different from those based on missing
SHAPE reactivity score constraints and minimum free energy
(Figure 3L, J). This highlights that imputed structure scores can
guide structural modeling when experimental probing data is
unavailable.

Database improved user interfaces and
visualization

We redesigned the user interface in RASP, enhancing both

user-friendliness and stability. We expanded the search and
visualization capabilities to incorporate proximity ligation-
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Figure 2. Data statistics of RASP v2.0. (A) Composition of RNA structure datasets in RASP v2.0. (B) Comparison of dataset numbers for
transcriptome-wide structure probing methods in RASP and RASP v2.0. (C) Target numbers of target-specific structure probing data in RASP v2.0,
categorized by RNA types. (D) Number of intramolecular and intermolecular RRIs detected by proximity ligation-based methods in RASP v2.0. (E)
Number of transcripts or strains identified by footprinting-based structure probing methods across RNA types in different species. Dashed lines are used
to distinguish viruses from other species. (F) Number of transcripts or strains involving intramolecular RRIs across RNA types in different species.
Dashed lines are used to distinguish viruses from other species. (G) Statistical information on different types of intermolecular RRIs identified by

proximity ligation-based structure probing methods.

based structure data. Moreover, the search module in RASP
v2.0 was upgraded to include three query modes: ‘Search
Gene’, ‘Search Sequence’, and ‘Search Genomic Coordinate’
(Figure 4A). The ‘Search Gene’ mode allows users to query
interested transcripts using a specific gene symbol or tran-
script ID, while the ‘Search Sequence’ mode and the ‘Search
Genomic Coordinate’ mode enable users to search gene can-
didates with a user-defined sequence or genomic region. Af-
ter searching through one of the three modes above, a match

list will be provided, including gene symbol, transcript link
list, structure score browser link, intermolecular browser link,
intramolecular browser link, and other important informa-
tion (Figure 4A). Users can visualize structure scores and RRIs
through these links. Additionally, we updated JBrowse (47) to
JBrowse 2 (37) for a more stable display of structure score
tracks (Figure 4B), and introduced IGV-web (38) (Figure 4C)
and Circos plot(39) (Figure 4D) to visualize intramolecular
and intermolecular RRIs.
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Figure 3. Imputation results for transcriptome-wide RNA structure datasets. (A) Distribution of average structure score coverage and transcript numbers
for 218 transcriptome-wide RNA structure datasets. The red cross marks the selected datasets for imputation, the blue dot marks transcriptome-wide
structure probing datasets, and the dashed line marks the imputation cutoff. (B) Performance comparison between the meta model and fine-tuned
model based on the 59 selected transcriptome-wide RNA structure datasets. (C) Structure score coverage before and after imputation for the 59
selected transcriptome-wide RNA structure datasets. (D) Improvements of structure score coverage for the 59 selected transcriptome-wide RNA
structure datasets. (E) An example showing the true and imputed structural scores. The upper track shows the true structure scores, the middle track
shows the randomly masked structure scores to simulate the missing structure scores, and the bottom track shows the imputed structure scores. Blue,
red and grey bars represent true structure score, imputed structure score and missing structure score, respectively. The height of a bar represents the
value of the SHAPE reactivity score. (F) The known RNA secondary structure of signal recognition particle RNA from RNAcentral, including
non-canonical base pairs. (G) An example of signal recognition particle RNA showing the structural model with original SHAPE reactivity score
constrains. (H) An example of signal recognition particle RNA showing the structural model with imputed SHAPE reactivity score constrains. (I) An
example of signal recognition particle RNA showing the structural model with missing SHAPE reactivity score constrains. (J) An example of signal
recognition particle RNA showing the structural model generated by minimum free energy without SHAPE reactivity score constrains.
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plotted using Circos Plot.

Database added new analysis functions

Basic usage of online analysis functions

The input data types for the analysis modules in RASP v2.0
are uniform, with Figure SA as an example. The left box is for
RNA sequence input, while the right box is for RNA structure
input. Some relevant parameters are required to be set before
submitting the task. For each analysis module, we also pro-
vide one or two examples to help users quickly understand
the functionality of the module.

Structure score imputation

RASP v2.0 supports missing structure score imputation using
Structurelmpute (35), which predicts missing structure scores
using flanking sequences. Currently, this module provides 59
fine-tuned models derived from corresponding transcriptome-
wide RNA structure datasets. As shown in Figure 5B, after en-
tering the sequence and structure scores (where ‘Null’ repre-
sents missing structure scores), the results page displays struc-
ture scores after imputation, with green showing raw structure

scores and orange showing imputed structure scores. Each in-
put RNA sequence must be at least 100 nt in length.

RNA structure prediction

In addition to the existing RNA secondary structure predic-
tion module in RASP, RASP v2.0 introduced an RNA tertiary
structure prediction module using SImRNA (44,48). SimRNA
applies Monte Carlo simulations to explore 3D RNA con-
formations, allowing the secondary structure as a constraint
for RNA tertiary structure. As shown in Figure 5C, users can
directly predict RNA secondary structure based on structure
scores as in RASP, and then use these predictions to constrain
tertiary structure predictions. Predicted RNA secondary struc-
ture can be visualized locally via VARNA (40) or online via
forna (41). Predicted RNA tertiary structures can be visual-
ized online using Molstar (42), and pdb/cif files can be down-
loaded for molecular docking.

RBP binding prediction

RASP v2.0 features an RBP binding prediction module based
on PrismNet (45,49), a deep learning-based approach that
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Figure 5. Applications of online analysis modules. (A) Input box example. 1 denotes the input window for the RNA sequence, 2 denotes the input
window for the RNA structure, 3 denotes the parameter selection window related to this module, and 4 denotes the submit button. (B) Results page for
the structure score imputation module. Green bars represent raw structure scores, orange bars represent imputed structure scores, and grey bars
represent positions with ‘Null” values. Users can download the "txt’ format of the imputed structure score by clicking the download icons. (C) Results
page for the structure prediction module. Users can visualize the predicted RNA secondary and tertiary structure or copy VARNA commands for local
visualization by clicking the ‘Go’" buttons. (D) Results page for the RBP binding prediction module. Users can visualize high attention region of saliency

map and potential motifs by clicking View/Hide" buttons.

predicts potential RBP binding sites using RNA sequences and
their structure scores. This module currently supports 168
RBP binding predictions across various cell lines. As shown
in Figure 5D, the results page displays basic information and
inferred results of input sequences, including binding prob-
ability, RBP binding sites, high attention region of saliency
map, and potential RBP motifs. Additionally, we have col-
lected known RBP motifs from the CISBP-RNA Database
(50), users can compare the similarity between predicted mo-
tifs and known motifs. Each input RNA sequence or structure
must be at least 101 nt in length.

Discussion

With the advent of high-throughput RNA structure probing
methods, large-scale RNA structure datasets are accumulating
rapidly. These structure probing data are essential for mod-
eling higher-order RNA structures and elucidating the rela-
tionships between structure and function of RNA molecule.
Through extensive data collection, we developed RASP v2.0,

which includes 438 RNA structure datasets from 24 species
across 39 experimental methods. We also improved the data
quality of 59 transcriptome-wide RNA structure datasets
through data imputation. Nevertheless, we would like to note
those that the imputed data should be used with caution. Fi-
nally, RASP v2.0 introduces three online analysis modules to
assist researchers for studying RNA structure.

Currently, the analysis of footprinting-based and proximity
ligation-based structure probing data remains relatively inde-
pendent. Therefore, integrating these datasets through joint
analysis is crucial for a more comprehensive understanding
of higher-order RNA structures. This integration will be in-
valuable for elucidating molecular mechanisms and advanc-
ing treatments for human diseases. Furthermore, developing
a unified computational pipeline to standardize experimental
data processing is highly desirable, as it would ensure the com-
parability of results across different technologies and studies.
As more data are generated, we will continue to update RASP
v2.0 as a repository for RNA structure information and an-
notations.
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Data availability

The RASP v2.0 database is freely accessible at http://rasp2.
zhanglab.net/. The RNA structure data can be downloaded
from http://rasp2.zhanglab.net/download/.
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