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Abstract 

RNA molecules function in numerous biological processes by folding into intricate str uct ures. Here we present RASP v2.0, an updated database 
for RNA str uct ure probing data feat uring a subst antially expanded collection of dat asets along with enhanced online str uct ural analysis func- 
tionalities. Compared to the pre vious v ersion, RASP v2.0 includes the f ollo wing impro v ements: (i) the number of RNA str uct ure datasets has 
increased from 156 to 438, comprising 216 transcriptome-wide RNA str uct ure datasets, 141 target-specific RNA str uct ure datasets, and 81 
RNA–RNA interaction datasets, thereby broadening species coverage from 18 to 24, (ii) a deep learning-based model has been implemented to 
impute missing str uct ural signals for 59 transcriptome-wide RNA str uct ure datasets with low str uct ure score coverage, significantly enhancing 
dat a qualit y, particularly f or lo w-abundance RNAs, (iii) three ne w online analy sis modules ha v e been deplo y ed to assist RNA str uct ure st udies, 
including missing str uct ure score imputation, RNA secondary and tertiary str uct ure prediction, and RNA binding protein (RBP) binding prediction. 
By providing a resource of much more comprehensive RNA str uct ure data, RA SP v2.0 is poised to f acilitate the e xploration of RNA str uct ure- 
function relationships across diverse biological processes. RASP v2.0 is freely accessible at http:// rasp2.zhanglab.net/ . 
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revious studies have shown that RNA molecules participate
n various biological processes, including transcription, splic-
ng, localization, translation, and degradation( 1–5 ). These
omplex cellular activities heavily depend on RNA’s ability
o fold into intricate structures. These structures also provide
otential binding sites or pockets, allowing RNA molecules to
nteract with other RNAs, RNA-binding proteins (RBPs), or
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small molecules, thereby making RNA molecules as promis-
ing target for disease treatment( 6–9 ). However, RNA struc-
tures are dynamic and may undergo conformational changes
depending on solvent conditions, resulting in different bind-
ing states under variable cellular context ( 10–13 ). This com-
plexity makes traditional protein structure probing methods,
such as X-ray crystallography ( 14 ), nuclear magnetic reso-
nance (NMR) spectroscopy( 15 ), and cryo electron microscopy
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ovem
(Cryo-EM), which are primarily used to determine a single
conformation, challenging to be applied to RNA structure re-
solving. 

In recent years, numerous sequencing-based methods have
been developed to probe RNA structures in a high-throughput
fashion, many of which can be applied in cells ( 16 ).
These structure probing methods can be categorized into
footprinting-based and proximity ligation-based methods
( 6 ,17 ). Footprinting-based methods utilize reagents or en-
zymes to selectively modify or digest RNA molecules based
on their structure, generating structural signals that represent
the probabilities for a nucleotide is in single-stranded con-
formation. DMS-seq ( 18 ), icSHAPE( 19 ), SHAPE-MaP ( 20 ),
Structure-seq ( 21 ) and RL-seq ( 22 ), are representative ex-
amples of these methods. Proximity ligation-based methods
employ reagents or proteins to capture spatially proximate
RNA molecules, directly identifying intramolecular RNA–
RNA interactions (RRIs) (within the same RNA molecule)
or intermolecular RRIs (between different RNA molecules).
PARIS ( 23 ), SPLASH ( 24 ), RIC-seq ( 25 ) and KARR-seq ( 26 )
are representative examples of these methods. These high-
throughput methods have produced extensive structural data
both in vitro and in vivo across different species, providing
invaluable resources for studying RNA structure. 

A few databases, including RMDB ( 27 ), RSVdb ( 28 )
and RASP ( 29 ), have been developed as repositories for
footprinting-based structure probing data. Among which,
RMDB primarily focuses on RNA structures identified by
low-throughput methods, while RSVdb specializes in RNA
structures detected using the DMS reagent. RASP stands
out as one of the first databases to include RNA structure
probing data generated from multiple high-throughput meth-
ods. In addition, other databases such as RISE ( 30 ), RAID
v2.0 ( 31 ) and NPInter v5.0 ( 32 ) have been created to cu-
rate RRIs based on proximity ligation-based structure prob-
ing data. However, these databases primarily focus on in-
termolecular RRIs, often overlooking intramolecular interac-
tions. Overall, the existing RNA structure databases primarily
focus on a single type of structure probing data, and usually
provide very limited capacities for online structural analysis. 

Here we present RASP v2.0, a substantially updated ver-
sion of the RASP database featuring a much larger collec-
tion of datasets along with enhanced online structural analy-
sis functionalities. Specifically, RASP v2.0 contains 438 RNA
structure datasets derived from 85 publications, and inte-
grates RNA structure data generated from 39 experimental
methods, encompassing both footprinting-based and proxim-
ity ligation-based techniques. RASP v2.0 improved the struc-
ture score coverage of 59 transcriptome-wide RNA structure
datasets using a deep learning-based model, which facilitate
the study of low-abundance RNAs. RASP v2.0 also offers
three online analysis modules for structure-related analyses.
In summary, RASP v2.0 is a powerful database that provides
comprehensive RNA structure probing data and supports var-
ious online structural analysis functionalities. 

Materials and methods 

Data collection 

To develop a more comprehensive RNA structure database,
we integrated RNA structure datasets from our previously re-
leased databases, i.e. RASP( 29 ) and RISE( 30 ). In addition, we
collected and curated all published RNA structure datasets,
covering research up to March 2024. As shown in Figure 1 ,
RASP v2.0 incorporates RNA structure data derived from 

both footprinting-based and proximity ligation-based struc- 
ture probing methods. Specifically, we searched the NCBI 
PubMed database ( 33 ) using ‘RNA structure’ and ‘RNA–
RNA interaction’ as keywords and manually identified all 
publications with downloadable RNA structure datasets. Pro- 
cessed data from the NCBI GEO database ( 34 ) or supplemen- 
tary files in these publications are incorporated into RASP 

v2.0 following the approach used in RASP and RISE. Fi- 
nally, we curated information from these datasets, includ- 
ing experimental methods, reagents, species, cell lines, ex- 
perimental conditions, DOI number, and other relevant de- 
tails to build RASP v2.0. Detailed information is available in 

Supplementary Table S1 and S2 . 

Structure score imputation 

RNA structural profiles from transcriptome-wide RNA struc- 
ture data usually contain missing signals for low-abundance 
transcripts. To improve data quality, particularly in datasets 
with low structure score coverage, we used a deep learning- 
based model, StructureImpute ( 35 ), to impute the missing sig- 
nals. Here we focused on transcriptome-wide RNA structure 
datasets with scores ranging from 0 to 1 that fulfill the Struc- 
tureImpute requirements. We categorized the datasets into 

A / C-only data and A / U / T / C / G data based on the nucleotides
detected by different methods, and we only focused on signals 
for the corresponding positions. 

To enable imputation across different cellular context,
we fine-tuned the meta model using specific datasets corre- 
sponding to each condition. The meta model was trained on 

a diverse mixture of icSHAPE datasets, including HEK293 

whole cell ( in vivo and in vitro ), HEK293 chromatin ( in 

vivo ), HEK293 nucleosome ( in vivo ), and HEK293 cyto- 
plasmic ( in vivo ), and can be downloaded from https:// 
github.com/ Tsinghua-gongjing/ StructureImpute . Specifically,
we sliced RNA sequences into 100 nt fragments and collected 

those with 100% structure score coverage for model finetun- 
ing. Fragments were then clustered using BLASTn ( 36 ) with 

an E-value equal to 10, and split into training and validation 

sets at a 7:3 ratio. During the training and validation process,
we randomly masked 30% nucleotides and used the flank- 
ing region for missing signal imputation as described in Struc- 
tureImpute. Next, we used the default parameters to finetune 
the meta model, with a batch size of 800 and a learning rate 
of 1E-5 for up to 100 epochs, stopping when no improvement 
was observed after 20 epochs. Finally, transcripts with missing 
structure scores are iteratively imputed following the strategy 
used in StructureImpute. In each iteration, transcripts were 
segmented using a window size of 100 nt and a step size of 
10 nt and those fragments with coverage > 50% would be im- 
puted. The imputed structure scores from each iteration would 

be used as input for the next round until the data coverage 
reaches 80% for at most eight iterations. To evaluate the per- 
formance of our model, we calculated the Pearson correlation 

coefficient between the true and imputed structure scores for 
all positions with missing signals in the validation set, follow- 
ing the strategy mentioned in StructureImpute. 

Database implementation 

RASP v2.0 was developed using Django for the back end and 

using HTML, CSS and JavaScript for the front end. RNA 
ber 2024

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1117#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1117#supplementary-data
https://github.com/Tsinghua-gongjing/StructureImpute


Nucleic Acids Research , 2024 3 

NCBI GEO 

Databases

RASP & RISE

Databases

Footprinting-based 

methods

Proximity ligation

-based methods

Transcriptome-wide

RNA structure datasets

Target-specific

RNA structure datasets

Intermolecular

RNA-RNA interactions

Intramolecular

RNA-RNA interactions

Data collection

Structure score imputation

Convert structure scores from the 

transcriptome to the genome and 

deposit in RASP v2.0

Data organization

Incorporate RNA structure datasets from existing databases 

Main modules

Search Browse

Tools Statistics

Download Help

Data processing

Figure 1. Flo w chart of RASP v2.0. 
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ov
tructure data are stored in a MySQL database. Visualiza-
ions of RNA structure data, including structure scores, inter-
olecular RRIs, and intramolecular RRIs, are generated us-

ng JBrowser2 ( 37 ), IGV-web ( 38 ) and Circos plot ( 39 ), re-
pectively. VARNA ( 40 ), forna ( 41 ) and Molstar ( 42 ) were
tilized to visualize RNA secondary and tertiary structures.
tructureImpute( 35 ), RNAstructure ( 43 ), SimRNA ( 44 ) and
rismNet ( 45 ) were utilized to perform structure score impu-
ation, RNA secondary structure, RNA tertiary structure, and
BP binding prediction. RASP v2.0 is installed on a work-

tation with four CPUs and three 1080 Ti GPUs, publicly ac-
essible at http:// rasp2.zhanglab.net/ with no login credentials
equired. 

esults 

xpanded structure probing data 

e have collected 216 transcriptome-wide RNA structure
atasets, 141 target-specific RNA structure datasets, and 81
roximity ligation-based probing datasets. This collection in-
reases both the quantity and variety of RNA structure prob-
ng data compared to the previous version (Figure 2 A). Specif-
cally, we updated the transcriptome-wide RNA structure
atasets from RASP (Figure 2 B) and added target-specific
NA datasets that were not previously included (Figure 2 C).
e have also incorporated 81 proximity ligation-based prob-

ng datasets (containing 45 974 567 intramolecular RRIs and
 628 511 intermolecular RRIs) (Figure 2 D). In contrast to the
iverse structure data obtained from footprinting-based struc-
ure probing methods (Figure 2 E), the RRI data are predomi-
antly derived from Homo sapiens , Mus musculus and differ-
nt virus (Figure 2 F). Further analysis shown that most of the
ntermolecular RRI data provided in RASP v2.0 are mRNA-
elated (Figure 2 G). More detailed information is available in
upplementary Table S3 . 

mpro ved co verage for low co verage structure 

robing data 

ome of the transcriptome-wide structure probing datasets
xhibit low data coverage, limiting analyses of RNA struc-
ture and functions. Here we used a deep learning-based
model, StructureImpute ( 35 ), to obtain insights of the miss-
ing signals. As shown in Figure 3 A, we filtered 59 valid
datasets from 218 transcriptome-wide structure datasets that
were suitable for missing structure score imputation. These
datasets exhibited < 80% structure score coverage and in-
cluded > 500 transcripts. Next, we individually fine-tuned
the meta model from StructureImpute on these 59 datasets.
The results demonstrated an averaged Pearson correlation
of 0.725 on the validation set for the 59 datasets, com-
pared to 0.498 without fine-tuning, indicating that the im-
puted structure scores accurately represent the experimen-
tal probing data (Figure 3 B). Finally, we applied these fine-
tuned models for missing structure score imputation, increas-
ing the average structure score coverage for these datasets
from 48.7% to 71.0% (Figure 3 C). We also present the
improvements of structure score coverage for each dataset
(Figure 3 D). 

As shown in the example regions within signal recogni-
tion particle (SRP) RNA from the icSHAPE_HEK293 dataset,
we observed a 0.762 Pearson correlation coefficient between
the ground truth and the imputed structure scores for all
nucleotides with missing signals (Figure 3 E). By building
structural models with / without SHAPE reactivity score con-
straints, we found that the structure generated with imputed
SHAPE reactivity score constraints is consistent with the one
generated with original SHAPE reactivity score constraints
(Figure 3 G, H), and is similar to the known RNA secondary
structure of SRP RNA from RNAcentral ( 46 ). However, these
structures were entirely different from those based on missing
SHAPE reactivity score constraints and minimum free energy
(Figure 3 I, J). This highlights that imputed structure scores can
guide structural modeling when experimental probing data is
unavailable. 

Database improved user interfaces and 

visualization 

We redesigned the user interface in RASP, enhancing both
user-friendliness and stability. We expanded the search and
visualization capabilities to incorporate proximity ligation-
 em

ber 2024

http://rasp2.zhanglab.net/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1117#supplementary-data
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Figure 2. Data statistics of RASP v2.0. ( A ) Composition of RNA structure datasets in RASP v2.0. ( B ) Comparison of dataset numbers for 
transcriptome-wide str uct ure probing methods in RA SP and RA SP v2.0. ( C ) Target numbers of target-specific str uct ure probing data in RA SP v2.0, 
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based structure data. Moreover, the search module in RASP
v2.0 was upgraded to include three query modes: ‘Search
Gene’, ‘Search Sequence’, and ‘Search Genomic Coordinate’
(Figure 4 A). The ‘Search Gene’ mode allows users to query
interested transcripts using a specific gene symbol or tran-
script ID, while the ‘Search Sequence’ mode and the ‘Search
Genomic Coordinate’ mode enable users to search gene can-
didates with a user-defined sequence or genomic region. Af-
ter searching through one of the three modes above, a match
list will be provided, including gene symbol, transcript link 

list, structure score browser link, intermolecular browser link,
intramolecular browser link, and other important informa- 
tion (Figure 4 A). Users can visualize structure scores and RRIs 
through these links. Additionally, we updated JBrowse ( 47 ) to 

JBrowse 2 ( 37 ) for a more stable display of structure score 
tracks (Figure 4 B), and introduced IGV-web ( 38 ) (Figure 4 C) 
and Circos plot( 39 ) (Figure 4 D) to visualize intramolecular 
ovem
ber 2024
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Figure 3. Imputation results for transcriptome-wide RNA str uct ure datasets. ( A ) Distribution of a v erage str uct ure score co v erage and transcript numbers 
for 218 transcriptome-wide RNA str uct ure datasets. The red cross marks the selected datasets for imputation, the blue dot marks transcriptome-wide 
str uct ure probing datasets, and the dashed line marks the imputation cutoff. ( B ) Performance comparison between the meta model and fine-tuned 
model based on the 59 selected transcriptome-wide RNA str uct ure datasets. ( C ) Str uct ure score co v erage bef ore and after imputation f or the 59 
selected transcriptome-wide RNA str uct ure datasets. ( D ) Impro v ements of str uct ure score co v erage f or the 59 selected transcriptome-wide RNA 

str uct ure datasets. ( E ) An example showing the true and imputed structural scores. The upper track shows the true structure scores, the middle track 
shows the randomly masked str uct ure scores to simulate the missing str uct ure scores, and the bottom track shows the imputed str uct ure scores. Blue, 
red and grey bars represent true structure score, imputed structure score and missing structure score, respectively. The height of a bar represents the 
value of the SHAPE reactivity score. ( F ) The known RNA secondary str uct ure of signal recognition particle RNA from RNAcentral, including 
non-canonical base pairs. ( G ) An example of signal recognition particle RNA showing the str uct ural model with original SHAPE reactivity score 
constrains. ( H ) An example of signal recognition particle RNA showing the str uct ural model with imputed SHAPE reactivity score constrains. ( I ) An 
example of signal recognition particle RNA showing the str uct ural model with missing SHAPE reactivity score constrains. ( J ) An example of signal 
recognition particle RNA showing the str uct ural model generated by minimum free energy without SHAPE reactivity score constrains. 
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Figure 4. Updated Search and Browse modules. ( A ) Three types of search approaches in the search module, and the corresponding match lists. ( B ) 
Visualization of str uct ure score tracks using JBrowse 2. ( C ) Visualization of intramolecular RRIs using IGV-Web. ( D ) Visualization of intermolecular RRIs 
plotted using Circos Plot. 
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Database added new analysis functions 

Basic usage of online analysis functions 
The input data types for the analysis modules in RASP v2.0
are uniform, with Figure 5 A as an example. The left box is for
RNA sequence input, while the right box is for RNA structure
input. Some relevant parameters are required to be set before
submitting the task. For each analysis module, we also pro-
vide one or two examples to help users quickly understand
the functionality of the module. 

Structure score imputation 

RASP v2.0 supports missing structure score imputation using
StructureImpute ( 35 ), which predicts missing structure scores
using flanking sequences. Currently, this module provides 59
fine-tuned models derived from corresponding transcriptome-
wide RNA structure datasets. As shown in Figure 5 B, after en-
tering the sequence and structure scores (where ‘Null’ repre-
sents missing structure scores), the results page displays struc-
ture scores after imputation, with green showing raw structure
scores and orange showing imputed structure scores. Each in- 
put RNA sequence must be at least 100 nt in length. 

RNA structure prediction 

In addition to the existing RNA secondary structure predic- 
tion module in RASP, RASP v2.0 introduced an RNA tertiary 
structure prediction module using SimRNA ( 44 ,48 ). SimRNA 

applies Monte Carlo simulations to explore 3D RNA con- 
formations, allowing the secondary structure as a constraint 
for RNA tertiary structure. As shown in Figure 5 C, users can 

directly predict RNA secondary structure based on structure 
scores as in RASP, and then use these predictions to constrain 

tertiary structure predictions. Predicted RNA secondary struc- 
ture can be visualized locally via VARNA ( 40 ) or online via 
forna ( 41 ). Predicted RNA tertiary structures can be visual- 
ized online using Molstar ( 42 ), and pdb / cif files can be down- 
loaded for molecular docking. 

RBP binding prediction 

RASP v2.0 features an RBP binding prediction module based 

on PrismNet ( 45 ,49 ), a deep learning-based approach that 
em
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Figure 5. Applications of online analysis modules. ( A ) Input box example. 1 denotes the input window for the RNA sequence, 2 denotes the input 
windo w f or the RNA str uct ure, 3 denotes the parameter selection window related to this module, and 4 denotes the submit button. ( B ) R esults page f or 
the str uct ure score imputation module. Green bars represent raw str uct ure scores, orange bars represent imputed str uct ure scores, and grey bars 
represent positions with ‘Null’ values. Users can download the ‘.txt’ format of the imputed str uct ure score by clicking the download icons. ( C ) Results 
page for the str uct ure prediction module. Users can visualize the predicted RNA secondary and tertiary str uct ure or copy VARNA commands for local 
visualization by clicking the ‘Go’ buttons. ( D ) Results page for the RBP binding prediction module. Users can visualize high attention region of saliency 
map and potential motifs by clicking ‘View / Hide’ buttons. 
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redicts potential RBP binding sites using RNA sequences and
heir structure scores. This module currently supports 168
BP binding predictions across various cell lines. As shown

n Figure 5 D, the results page displays basic information and
nferred results of input sequences, including binding prob-
bility, RBP binding sites, high attention region of saliency
ap, and potential RBP motifs. Additionally, we have col-

ected known RBP motifs from the CISBP-RNA Database
 50 ), users can compare the similarity between predicted mo-
ifs and known motifs. Each input RNA sequence or structure
ust be at least 101 nt in length. 

iscussion 

ith the advent of high-throughput RNA structure probing
ethods, large-scale RNA structure datasets are accumulating

apidly. These structure probing data are essential for mod-
ling higher-order RNA structures and elucidating the rela-
ionships between structure and function of RNA molecule.
hrough extensive data collection, we developed RASP v2.0,
which includes 438 RNA structure datasets from 24 species
across 39 experimental methods. We also improved the data
quality of 59 transcriptome-wide RNA structure datasets
through data imputation. Nevertheless, we would like to note
those that the imputed data should be used with caution. Fi-
nally, RASP v2.0 introduces three online analysis modules to
assist researchers for studying RNA structure. 

Currently, the analysis of footprinting-based and proximity
ligation-based structure probing data remains relatively inde-
pendent. Therefore, integrating these datasets through joint
analysis is crucial for a more comprehensive understanding
of higher-order RNA structures. This integration will be in-
valuable for elucidating molecular mechanisms and advanc-
ing treatments for human diseases. Furthermore, developing
a unified computational pipeline to standardize experimental
data processing is highly desirable, as it would ensure the com-
parability of results across different technologies and studies.
As more data are generated, we will continue to update RASP
v2.0 as a repository for RNA structure information and an-
ovem
ber 2024
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Data availability 

The RASP v2.0 database is freely accessible at http://rasp2.
zhanglab.net/. The RNA structure data can be downloaded
from http:// rasp2.zhanglab.net/ download/ . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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