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ABSTRACT

PrePPI (http://bhapp.c2b2.columbia.edu/PrePPI) is
a database that combines predicted and experimen-
tally determined protein–protein interactions (PPIs)
using a Bayesian framework. Predicted interactions
are assigned probabilities of being correct, which
are derived from calculated likelihood ratios (LRs)
by combining structural, functional, evolutionary
and expression information, with the most import-
ant contribution coming from structure. Experimen-
tally determined interactions are compiled from a
set of public databases that manually collect PPIs
from the literature and are also assigned LRs. A final
probability is then assigned to every interaction by
combining the LRs for both predicted and experi-
mentally determined interactions. The current
version of PrePPI contains �2 million PPIs that
have a probability more than �0.1 of which
�60 000 PPIs for yeast and �370 000 PPIs for
human are considered high confidence (probabil-
ity> 0.5). The PrePPI database constitutes an
integrated resource that enables users to examine
aggregate information on PPIs, including both
known and potentially novel interactions, and that
provides structural models for many of the PPIs.

INTRODUCTION

Knowledge of protein–protein interactions (PPIs) is essen-
tial to understanding cellular regulatory processes. Much
effort involving a multitude of methods has been devoted
to the determination of direct physical interactions between
proteins (1,2). Although most detection methods can only
be used for small-scale studies, a few techniques, such as the
yeast two-hybrid assays and affinity purification, can be
scaled up to determine PPIs in a high-throughput manner
(3,4). These high-throughput techniques have been applied

to genome-wide studies of PPIs for a number of model
organisms, including yeast (5–12), fly (13), worm (14),
bacteria (15,16), human (17–19) and, more recently,
Arabidopsis (20).

A number of databases have been created to systemat-
ically collect and store information on experimentally
determined PPIs, including the Munich Information
Center for Protein Sequence (MIPS) protein interaction
database (21), the database of interacting proteins [DIP,
(22)], the protein interaction database [IntAct, (23)], the
molecular interaction database [MINT, (24)], the Human
Protein Reference Database [HPRD, (25)] and the
Biological General Repository for Interaction Datasets
[BioGRID, (26)]. To date, hundreds of thousands of
PPIs have been stored in these databases that cover
hundreds of different organisms and contain interactions
determined by tens of different methods (27,28).

Although these databases are crucially valuable re-
sources, they inevitably contain some number of false
interactions (false positives) and are largely incomplete
in that many interactions are still not annotated (false
negatives) (29–31). Although false negatives mainly
result from the inherent limitations of different detection
methods and incomplete screening of the vast possible
interaction space, false positives in these databases can
result from errors or ambiguities in experiments (32). In
particular, data sets generated from high-throughput
methods are estimated to have a much higher error rate
than traditional small-scale studies (33). In addition to
experimental errors, false-negative and false-positive inter-
actions also result from curation errors. For example, a
study of discrepancies between different databases showed
that, even for the same set of publications, two databases
on average only fully agree on 42% of the interactions
and 62% of the proteins (34). The differences were
attributed to divergent assignments of organism or splice
isoforms, and alternative representations of multiprotein
complexes, etc.

Parallel to experimental studies and literature curations,
computational predictions have also been used to infer
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new interactions from indirect clues. Information such as
sequence and structural homology, domain–domain inter-
action profile, genomic context, gene fusion, phylogenetic
profile/tree similarity, gene co-expression, function simi-
larity and network topology has been effectively exploited
to evaluate the reliabilities of experimentally determined
interactions (35,36), and to predict PPIs on a large scale
(37–41). Usually, every indirect clue by itself is only a
weak PPI predictor, but predictions can be improved by
integrating different sources of evidence using a variety of
machine learning methods. There have been a number of
online databases that store PPIs predicted from these in-
tegrative methods, such as STRING (42), Predictome (43),
OPHID (44) and its replacement I2D, IntNetDB (45) and
PIPs (46). These databases have their own limitations, and
it should be noted that, owing to the nature of many pre-
diction methods, many of the predicted interactions are
often more indicative of protein functional associations
than of direct physical interactions.

Recently, we described a PPI prediction method
(PrePPI) that is largely based on 3D protein structural
information (47). We showed that, with the exploitation
of homology models and remote geometric relationships,
structural information can be used to accurately predict
PPIs on a genome-wide scale. The further integration of
structural with other functional clues yields prediction
performance comparable with high-throughput experi-
ments. Experimental tests of a number of predictions dem-
onstrate the ability of the structure-based algorithm to
identify novel unsuspected PPIs of significant biological
interest.

Given the inconsistent levels of reliability and lack of
complete overlap between different PPI databases, a
resource that integrates different sources of information
and that reports an appropriate measure of reliability
should be extremely valuable. In this article, we describe
the PrePPI database that contains interactions predicted
from our structure-based integrative method, and also
includes interactions compiled from a set of public data-
bases that manually curate experimentally determined
PPIs from the literature. A probability for each interaction
is calculated using a Bayesian framework as described
later in the text.

THE PrePPI DATABASE: DATA SOURCES

Predicted interactions

Predicted interactions in the PrePPI database are
generated by our structure-based integrative PPI predic-
tion method that combines structural modeling with other
genomic, evolutionary and functional clues (47). Briefly,
for a pair of proteins of interest, we first search for repre-
sentative structures of the query proteins in the PDB and
homology model databases, and then use these to search
for structural neighbors of each protein. A protein–
protein complex found in the Protein Quaternary
Structure database or Protein Data Bank is used as a
‘template’ for the interaction whenever it contains a pair
of interacting chains that are structural neighbors of the
respective query proteins. We then construct a model by

superposing the individual subunits on their correspond-
ing structural neighbors in the template complex and cal-
culate a likelihood ratio (LR) for each model to represent
a true interaction using a Bayesian network trained on a
positive and a negative interaction reference set. We finally
combine the structure-derived LR with non-structural
evidence associated with the query proteins using a naı̈ve
Bayesian classifier.
Our analyses show that the performance of the predic-

tion method is comparable with high-throughput studies,
and that this is primarily due to the large-scale use of
structural information made possible by the use of
homology models and looking broadly across protein
structure space for structure/function relationships. To
put this in perspective, using structure alone we build
structural models for �2.4 million and 36 million yeast
and human interactions, respectively.

Experimentally determined interactions

We collected PPIs from six publicly available databases
(MIPS, DIP, IntAct, MINT, HPRD and BioGRID) and
obtained 117 803 interactions for yeast and 82 060 inter-
actions for human. We mapped protein identifiers from
different databases to UniProt accession numbers and
used pairs of accession numbers as the unique identifiers
of all PPIs. Different databases contain different numbers
of false-positive and false-negative interactions that are
due to both experimental and curation errors. We have
used Bayesian statistics to calculate an LR for database
interactions as follows. We used a positive reference set
that contains 11 851 yeast interactions and 7409 human
interactions that have more than one supporting publica-
tion, and a negative reference set constructed by pairing
proteins located in different cellular compartments (47).
We assigned each of these interactions to one of seven
categories and calculated an LR for each category. The
first category contains interactions that are present in
multiple databases, and the other six contain interactions
present in exclusively one of the databases listed earlier in
the text. In this way, we obtain an objective evaluation
that accounts for both experimental and curation quality.

Combining the LRs for predicted and experimentally
determined interactions

An advantage of using a Bayesian framework to calculate
an LR for each database is that we can easily combine
experimentally determined interactions with computation-
ally predicted interactions. Because the two are weakly
correlated, we use a naı̈ve Bayesian classifier to combine
them by simply multiplying the two LR scores to obtain a
combined LR score for each interaction.
In the PrePPI database, we have scaled the combined

LR to a probability using the following equation:

probability ¼
LR

LR+LRcutoff
ð1Þ

We use an LRcutoff of 600, which roughly corresponds to
a false-positive rate of 0.001, based on the assumption that
the probability that an interaction of LR 600 is true is 0.5
(47,48).
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The PrePPI database now contains �2 million PPIs
with a probability >0.1. Of these, 61 720 PPIs for yeast
and 372 545 PPIs for human have a probability >0.5.

THE PrePPI DATABASE: WEB INTERFACE

The PrePPI database can be queried through the UniProt
accession number (e.g. P03989), gene name (e.g. PRNP)
or protein name (e.g. Histone H2A) of a gene or protein.
The server will return a description of the query protein,
the number of proteins it interacts with and a table with
detailed information about each interaction (Figure 1).
Each row of the table lists proteins predicted to interact
with the query, the sources of information used in the
prediction, different LRs and the final combined probabil-
ity, as well as whether the interaction has been docu-
mented in databases or in the literature.
The sources of information used in the prediction are

represented by their ‘prediction codes’. Details on differ-
ent types of information can be found in the ‘Help’ page of
the web server. The ‘Prediction LR’ column shows the LR
obtained from the Bayesian network that combines the
different sources of structural and non-structural
evidence for the interaction represented by their prediction
codes [see (47) for details on the types of evidence used].
We also calculate a ‘database LR’ as described earlier and
combine this with the prediction LR to get a final LR,

which is shown in the table as a probability (Final
prob.) determined from Equation 1. If an interaction has
been previously documented, we put the corresponding
database symbols in the seventh column and the
PubMed links to the description of the relevant experi-
ments in the eighth column.

Interactions are ordered according to their final proba-
bilities. By default, we only show the high confidence pre-
dictions (final probability >0.5), but predictions with
lower probabilities can be viewed by clicking the link at
the bottom right. All interactions for the query protein can
be downloaded by clicking the link at the bottom left.

A unique feature of the PrePPI database is the availabil-
ity of structural interaction models for those PPIs predicted
from our structural modeling algorithm. Figure 2 shows an
example of an interaction model built for the human TGF-
b receptor type-1 (P36897) and the complement component
C1q receptor (Q9NPY3), using a homology model from
Skybase (49) for Q9NPY3 and exploiting the remote struc-
tural relationship between these monomer structures and a
designed protein that forms a homodimer (50). Users can
investigate the interaction model and generate experimen-
tally testable hypotheses for how the two proteins interact.
It is important to emphasize that no structural refinement
of PrePPI models is carried out, so they may contain phys-
ically unrealistic features such as steric clashes. The
structure-based LR for the model is shown in the viewer
and, together with the reasonableness of the model itself,

Figure 1. The PrePPI page of predicted protein–protein interactions for query protein P03989.
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should be considered when evaluating its biological rele-
vance and when deciding whether some form of structural
refinement might be of value.

CAVEATS AND PLANS

The goal of PrePPI is to generate testable hypotheses
derived in part from structure, but its use should be
seen, in our opinion, as an early step in the process of
biological discovery. PrePPI is under constant develop-
ment, but at this stage, it is worth pointing out a
number of caveats. First, although we have shown that
the structure-based LR can account for specificity in the
sense that it can differentiate closely related structural
domains that form complexes from those that do not
[see Figure S15 in the supplemental material of (47)], the
methods used are not perfect and predictions should be
considered carefully in the context of any additional data
that might be available (for example, the highest scoring
predictions may be paralogs that appear in different

cellular compartments). As discussed earlier in the text,
other problems may arise from the fact that we do not
attempt to evaluate the 3D model of a putative complex
beyond scoring of the interface (47) so that in many cases
the model may appear physically unrealistic. Ideally, it
will be possible to address such issues automatically
through, for example, the use of orthology databases or
refinement of side chains, loops and relative domain orien-
tations. We plan to implement such features in future
versions of PrePPI. However, because PrePPI evaluates
billions of interaction models (47), structural refinement
would have to be carried out in a later filtering step,
perhaps motivated by biological interest. At this stage,
we have chosen to present all high probability predictions
with the expectation that a thoughtful user will be able to
recognize obvious false positives using the information
available on the server itself, in external databases or in
the biological literature.
Finally we note that a high probability PrePPI predic-

tion for an interaction says nothing about the

Figure 2. The structural interaction model for TGF-b receptor type I (green, UniProt ID P36897) and complement component C1q receptor (cyan,
UniProt ID Q9NPY3) based on the structure of a designed protein (gold and red for A and B chains, respectively, of PDB file 1jy4).
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oligomerization state of the proteins involved. Our goal at
this stage is to assign a probability for an interaction
between two proteins to occur and provide an initial
model of where an interface might be located. Again,
our hope is that the interested user will be able to use
the information provided in the PrePPI database as a
basis for new experimental and computational efforts on
a particular system of interest.

CONCLUSION

The PrePPI database differs from other PPI databases
based on the following four novel features: (i) PrePPI
provides structural information for many more inter-
actions than has previously been possible using
structure-enabled approaches and databases (51–53);
(ii) the predicted PPIs in PrePPI are obtained by
combining structural and non-structural information;
(iii) the PrePPI database contains integrative information
of PPIs from major PPI databases and provides a
Bayesian measure as to the confidence level of these inter-
actions; and (iv) the PrePPI database assigns a single
probability for each interaction using a Bayesian frame-
work that combines quantitative results based on compu-
tational predictions with evidence contained in publicly
available databases. PrePPI now offers a comprehensive
source of PPI information for the yeast and human
genomes and will soon be expanded to other model
organisms.

FUNDING

National Institutes of Health [GM030518, GM094597,
CA121852]. Funding of the open access charge: Howard
Hughes Medical Institute.

Conflict of interest statement. None declared.

REFERENCES

1. Phizicky,E.M. and Fields,S. (1995) Protein-protein interactions:
methods for detection and analysis. Microbiol. Rev., 59, 94–123.

2. Shoemaker,B.A. and Panchenko,A.R. (2007) Deciphering
protein-protein interactions. Part I. Experimental techniques and
databases. PLoS Comput. Biol., 3, e42.

3. Parrish,J.R., Gulyas,K.D. and Finley,R.L. Jr (2006) Yeast
two-hybrid contributions to interactome mapping. Curr. Opin.
Biotechnol., 17, 387–393.

4. Vasilescu,J. and Figeys,D. (2006) Mapping protein-protein
interactions by mass spectrometry. Curr. Opin. Biotechnol., 17,
394–399.

5. Uetz,P., Giot,L., Cagney,G., Mansfield,T.A., Judson,R.S.,
Knight,J.R., Lockshon,D., Narayan,V., Srinivasan,M., Pochart,P.
et al. (2000) A comprehensive analysis of protein-protein
interactions in Saccharomyces cerevisiae. Nature, 403, 623–627.

6. Ito,T., Chiba,T., Ozawa,R., Yoshida,M., Hattori,M. and Sakaki,Y.
(2001) A comprehensive two-hybrid analysis to explore the yeast
protein interactome. Proc. Natl Acad. Sci. USA, 98, 4569–4574.

7. Gavin,A.C., Bosche,M., Krause,R., Grandi,P., Marzioch,M.,
Bauer,A., Schultz,J., Rick,J.M., Michon,A.M., Cruciat,C.M. et al.
(2002) Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature, 415, 141–147.

8. Ho,Y., Gruhler,A., Heilbut,A., Bader,G.D., Moore,L.,
Adams,S.L., Millar,A., Taylor,P., Bennett,K., Boutilier,K. et al.
(2002) Systematic identification of protein complexes in

Saccharomyces cerevisiae by mass spectrometry. Nature, 415,
180–183.

9. Gavin,A.C., Aloy,P., Grandi,P., Krause,R., Boesche,M.,
Marzioch,M., Rau,C., Jensen,L.J., Bastuck,S., Dumpelfeld,B.
et al. (2006) Proteome survey reveals modularity of the yeast cell
machinery. Nature, 440, 631–636.

10. Krogan,N.J., Cagney,G., Yu,H., Zhong,G., Guo,X.,
Ignatchenko,A., Li,J., Pu,S., Datta,N., Tikuisis,A.P. et al. (2006)
Global landscape of protein complexes in the yeast
Saccharomyces cerevisiae. Nature, 440, 637–643.

11. Yu,H., Braun,P., Yildirim,M.A., Lemmens,I., Venkatesan,K.,
Sahalie,J., Hirozane-Kishikawa,T., Gebreab,F., Li,N., Simonis,N.
et al. (2008) High-quality binary protein interaction map of the
yeast interactome network. Science, 322, 104–110.

12. Tarassov,K., Messier,V., Landry,C.R., Radinovic,S., Serna
Molina,M.M., Shames,I., Malitskaya,Y., Vogel,J., Bussey,H. and
Michnick,S.W. (2008) An in vivo map of the yeast protein
interactome. Science, 320, 1465–1470.

13. Giot,L., Bader,J.S., Brouwer,C., Chaudhuri,A., Kuang,B., Li,Y.,
Hao,Y.L., Ooi,C.E., Godwin,B., Vitols,E. et al. (2003) A protein
interaction map of Drosophila melanogaster. Science, 302,
1727–1736.

14. Li,S., Armstrong,C.M., Bertin,N., Ge,H., Milstein,S., Boxem,M.,
Vidalain,P.O., Han,J.D., Chesneau,A., Hao,T. et al. (2004) A
map of the interactome network of the metazoan C. elegans.
Science, 303, 540–543.

15. Butland,G., Peregrin-Alvarez,J.M., Li,J., Yang,W., Yang,X.,
Canadien,V., Starostine,A., Richards,D., Beattie,B., Krogan,N.
et al. (2005) Interaction network containing conserved and
essential protein complexes in Escherichia coli. Nature, 433,
531–537.

16. Kuhner,S., van Noort,V., Betts,M.J., Leo-Macias,A., Batisse,C.,
Rode,M., Yamada,T., Maier,T., Bader,S., Beltran-Alvarez,P. et al.
(2009) Proteome organization in a genome-reduced bacterium.
Science, 326, 1235–1240.

17. Rual,J.F., Venkatesan,K., Hao,T., Hirozane-Kishikawa,T.,
Dricot,A., Li,N., Berriz,G.F., Gibbons,F.D., Dreze,M., Ayivi-
Guedehoussou,N. et al. (2005) Towards a proteome-scale map of
the human protein-protein interaction network. Nature, 437,
1173–1178.

18. Stelzl,U., Worm,U., Lalowski,M., Haenig,C., Brembeck,F.H.,
Goehler,H., Stroedicke,M., Zenkner,M., Schoenherr,A.,
Koeppen,S. et al. (2005) A human protein-protein interaction
network: a resource for annotating the proteome. Cell, 122,
957–968.

19. Ewing,R.M., Chu,P., Elisma,F., Li,H., Taylor,P., Climie,S.,
McBroom-Cerajewski,L., Robinson,M.D., O’Connor,L., Li,M.
et al. (2007) Large-scale mapping of human protein-protein
interactions by mass spectrometry. Mol. Syst. Biol., 3, 89.

20. Arabidopsis Interactome Mapping Consortium. (2011) Evidence
for network evolution in an Arabidopsis interactome map.
Science, 333, 601–607.

21. Mewes,H.W., Albermann,K., Heumann,K., Liebl,S. and
Pfeiffer,F. (1997) MIPS: a database for protein sequences,
homology data and yeast genome information. Nucleic Acids Res.,
25, 28–30.

22. Salwinski,L., Miller,C.S., Smith,A.J., Pettit,F.K., Bowie,J.U. and
Eisenberg,D. (2004) The Database of Interacting Proteins: 2004
update. Nucleic Acids Res., 32, D449–D451.

23. Kerrien,S., Alam-Faruque,Y., Aranda,B., Bancarz,I., Bridge,A.,
Derow,C., Dimmer,E., Feuermann,M., Friedrichsen,A.,
Huntley,R. et al. (2007) IntAct—open source resource for
molecular interaction data. Nucleic Acids Res., 35, D561–D565.

24. Chatr-aryamontri,A., Ceol,A., Palazzi,L.M., Nardelli,G.,
Schneider,M.V., Castagnoli,L. and Cesareni,G. (2007) MINT: the
molecular interaction database. Nucleic Acids Res., 35,
D572–D574.

25. Keshava Prasad,T.S., Goel,R., Kandasamy,K., Keerthikumar,S.,
Kumar,S., Mathivanan,S., Telikicherla,D., Raju,R., Shafreen,B.,
Venugopal,A. et al. (2009) Human Protein Reference Database—
2009 update. Nucleic Acids Res., 37, D767–D772.

26. Stark,C., Breitkreutz,B.J., Reguly,T., Boucher,L., Breitkreutz,A.
and Tyers,M. (2006) BioGRID: a general repository for
interaction datasets. Nucleic Acids Res., 34, D535–D539.

D832 Nucleic Acids Research, 2013, Vol. 41, Database issue

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/41/D

1/D
828/1070064 by C

enter of Books and inform
ation, School of Econom

ic & M
anagem

ent, Tsinghua U
niversity user on 03 D

ecem
ber 2018



27. Lehne,B. and Schlitt,T. (2009) Protein-protein interaction
databases: keeping up with growing interactomes. Hum. Genomics,
3, 291–297.

28. Tsai,J., Rohl,C., Price,Y., Fischer,T.B., Paczkowsk,M. and
Zette,M.F. (2006) Cataloging the relationships between proteins.
Mol. Biotechnol., 34, 69–93.

29. von Mering,C., Krause,R., Snel,B., Cornell,M., Oliver,S.G.,
Fields,S. and Bork,P. (2002) Comparative assessment of
large-scale data sets of protein-protein interactions. Nature, 417,
399–403.

30. Braun,P., Tasan,M., Dreze,M., Barrios-Rodiles,M., Lemmens,I.,
Yu,H., Sahalie,J.M., Murray,R.R., Roncari,L., de Smet,A.S. et al.
(2009) An experimentally derived confidence score for binary
protein-protein interactions. Nat. Methods, 6, 91–97.

31. Deane,C.M., Salwinski,L., Xenarios,I. and Eisenberg,D. (2002)
Protein interactions: two methods for assessment of the reliability
of high throughput observations. Mol. Cell. Proteomics, 1,
349–356.

32. Sprinzak,E., Sattath,S. and Margalit,H. (2003) How reliable are
experimental protein-protein interaction data? J. Mol. Biol., 327,
919–923.

33. Reguly,T., Breitkreutz,A., Boucher,L., Breitkreutz,B.J., Hon,G.C.,
Myers,C.L., Parsons,A., Friesen,H., Oughtred,R., Tong,A. et al.
(2006) Comprehensive curation and analysis of global interaction
networks in Saccharomyces cerevisiae. J. Biol., 5, 11.

34. Turinsky,A.L., Razick,S., Turner,B., Donaldson,I.M. and
Wodak,S.J. (2010) Literature curation of protein interactions:
measuring agreement across major public databases. Database,
2010, baq026.

35. Deane,C.M., Salwinski,L., Xenarios,I. and Eisenberg,D. (2002)
Protein interactions: two methods for assessment of the reliability
of high throughput observations. Mol. Cell Proteomics, 1,
349–356.

36. Bader,J.S., Chaudhuri,A., Rothberg,J.M. and Chant,J. (2004)
Gaining confidence in high-throughput protein interaction
networks. Nat. Biotechnol., 22, 78–85.

37. Shoemaker,B.A. and Panchenko,A.R. (2007) Deciphering
protein-protein interactions. Part II. Computational methods to
predict protein and domain interaction partners. PLoS Comput.
Biol., 3, e43.

38. Valencia,A. and Pazos,F. (2002) Computational methods for the
prediction of protein interactions. Curr. Opin. Struct. Biol., 12,
368–373.

39. Salwinski,L. and Eisenberg,D. (2003) Computational methods of
analysis of protein-protein interactions. Curr. Opin. Struct. Biol.,
13, 377–382.

40. Szilagyi,A., Grimm,V., Arakaki,A.K. and Skolnick,J. (2005)
Prediction of physical protein-protein interactions. Phys. Biol., 2,
S1–S16.

41. Musso,G.A., Zhang,Z. and Emili,A. (2007) Experimental and
computational procedures for the assessment of protein complexes
on a genome-wide scale. Chem. Rev., 107, 3585–3600.

42. von Mering,C., Huynen,M., Jaeggi,D., Schmidt,S., Bork,P. and
Snel,B. (2003) STRING: a database of predicted functional
associations between proteins. Nucleic Acids Res., 31, 258–261.

43. Mellor,J.C., Yanai,I., Clodfelter,K.H., Mintseris,J. and DeLisi,C.
(2002) Predictome: a database of putative functional links
between proteins. Nucleic Acids Res., 30, 306–309.

44. Brown,K.R. and Jurisica,I. (2005) Online predicted human
interaction database. Bioinformatics, 21, 2076–2082.

45. Xia,K., Dong,D. and Han,J.-D. (2006) IntNetDB v1.0: an
integrated protein-protein interaction network database generated
by a probabilistic model. BMC Bioinformatics, 7, 508.

46. McDowall,M.D., Scott,M.S. and Barton,G.J. (2009) PIPs: human
protein–protein interaction prediction database. Nucleic Acids
Res., 37, D651–D656.

47. Zhang,Q.C., Petrey,D., Deng,L., Qiang,L., Shi,Y., Thu,C.A.,
Bisikirska,B., Lefebvre,C., Accili,D., Hunter,T. et al. (2012)
Structure-based prediction of protein-protein interactions on a
genome-wide scale. Nature, 490, 556–560.

48. Jansen,R., Yu,H., Greenbaum,D., Kluger,Y., Krogan,N.J.,
Chung,S., Emili,A., Snyder,M., Greenblatt,J.F. and Gerstein,M.
(2003) A Bayesian networks approach for predicting
protein-protein interactions from genomic data. Science, 302,
449–453.

49. Mirkovic,N., Li,Z., Parnassa,A. and Murray,D. (2007) Strategies
for high-throughput comparative modeling: applications to
leverage analysis in structural genomics and protein family
organization. Proteins, 66, 766–777.

50. Venkatraman,J., Nagana Gowda,G.A. and Balaram,P. (2002)
Design and construction of an open multistranded b-sheet
polypeptide stabilized by a disulfide bridge. J. Am. Chem. Soc.,
124, 4987–4994.
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